Именно здесь, мне кажется, кроется источник популярного до сих пор платоновского представления о математических идеях, согласно которому математические истины существуют «на самом деле», но существуют в некоей идеальной форме, в своего рода параллельной реальности, которая всегда существовала и будет существовать. Согласно этим представлениям, когда мы доказываем новую теорему, мы всего лишь находим то, что и так всегда существовало. Не думаю, что буквальный платонизм имеет смысл, но он довольно точно описывает процесс математических исследований. Выбирать не приходится: можно только трясти деревья и смотреть, не упадет ли с них что-нибудь полезное. В книге «Что такое математика на самом деле?» Ройбен Херш предлагает более реалистичный взгляд на математику как на общечеловеческий ментальный конструкт. В этом отношении математика похожа на деньги. «На самом деле» деньги – это не металлические кружочки, не бумажки и даже не числа в компьютере; это общий для людей набор договоренностей о том, как мы обмениваемся металлическими кружочками, бумажками или числами в компьютере друг с другом или обмениваем их на вещи.
Херш резко критиковал некоторых математиков, которые, сосредоточив свое внимание на формулировке «человеческий конструкт», утверждали, что математику ни в коем случае нельзя назвать произвольной; ее никто не выдумывал. И социальный релятивизм здесь не годится. Это правда, но Херш совершенно ясно объяснил, что математика – не любой человеческий конструкт. Мы сами решаем, заниматься нам Великой теоремой Ферма или не заниматься, но от нас никак не зависит, верна эта теорема или нет. Человеческий конструкт, который мы называем математикой, регулируется строгой системой логических ограничений, и нечто может быть добавлено в этот конструкт только при условии, что оно соответствует всем этим ограничениям. Собственно говоря, потенциально эти ограничения позволяют нам отличить истинное от ложного, но невозможно проделать это разделение, просто объявив результат громко и торжественно. Главный вопрос: истина или ложь? Я потерял уже счет случаям, когда некто нападает на какое-то спорное положение в математике, которое ему не нравится, и указывает при этом, что математика – это тавтология: все новое в ней является логическим следствием из вещей, которые нам уже известны. Ну да, так и есть. Все новое неявно скрыто в известном. Но самое трудное начинается, когда нам хочется вскрыть все неявное и сделать явным. Спросите об этом у Эндрю Уайлса; бесполезно говорить ему, что статус Великой теоремы Ферма был с самого начала предопределен логической структурой математики. Он потратил семь лет на поиск того, каков же на самом деле этот предопределенный статус. До тех пор пока кто-нибудь этого не сделал, предопределенность статуса значит не больше, чем если в ответ на вопрос, где находится Британская библиотека, сказать, что она находится в Британии.
* * *
Эта книга не упорядоченная история всей математики, я пытался представить в ней затрагиваемые математические темы более или менее упорядоченно, так, чтобы концепции усложнялись постепенно по ходу повествования. Для этого пришлось рассказывать обо всем примерно в хронологическом порядке. Хронологический порядок по темам оказался бы нечитаемым, поскольку мы постоянно перескакивали бы с одного математика на другого, поэтому я упорядочил главы по датам рождения и снабдил их отдельными перекрестными ссылками.
Значимых фигур – древних и современных, мужчин и женщин, представителей Востока и Запада – у меня получилось 25. Их личные истории начинаются в Древней Греции с великого геометра и инженера Архимеда, к числу достижений которого относятся и приблизительное вычисление числа π, и вычисление площади поверхности и объема сферы, и Архимедов винт для подъема воды, и механизм вроде крана, предназначенный для разрушения вражеских кораблей. За ним следуют три представителя далеких восточных стран, где в Средние века происходили все главные события в мире математики. Это китайский ученый Лю Хуэй, персидский математик Мухаммад ибн Муса аль-Хорезми, работы которого подарили нам слова «алгоритм» и «алгебра», и индиец Мадхава из Сангамаграмы, первым исследовавший бесконечные ряды для тригонометрических функций, заново открытые на Западе Ньютоном только через тысячу лет.
Главные события математической жизни вернулись в Европу в эпоху Итальянского возрождения, где мы встречаем Джироламо Кардано – одного из величайших мошенников, которому выпала честь украсить собой математический пантеон. Кардано, игрок и дебошир, написал также один из важнейших алгебраических текстов в истории человечества, занимался медициной и придерживался образа жизни, достойного страниц желтой прессы. А еще он составлял гороскопы. Напротив, Пьер де Ферма, знаменитый своей Великой теоремой, был законопослушным гражданином, хотя и питал страсть к математике, из-за чего часто пренебрегал своей работой юриста. Он превратил теорию чисел в признанную и уважаемую область математики; кроме того, он внес заметный вклад в развитие оптики и рассмотрел некоторые предварительные вопросы дифференциального исчисления. Эту тему довел до логического конца Ньютон, вершиной научной деятельности которого стала книга «Математические начала натуральной философии», которую обычно называют кратко: «Начала». В ней Ньютон изложил свои законы движения и тяготения и применил их к движению тел Солнечной системы. Деятельность Ньютона – переломный момент в математической физике; именно тогда она преобразовалась в организованное математическое исследование того, что сам Ньютон называл «Системой мира».
Читать дальше
Конец ознакомительного отрывка
Купить книгу