Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Здесь есть возможность читать онлайн «Ласло Мерё - Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: КоЛибри, Азбука-Аттикус, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Логика чудес. Осмысление событий редких, очень редких и редких до невозможности
  • Автор:
  • Издательство:
    КоЛибри, Азбука-Аттикус
  • Жанр:
  • Год:
    2019
  • Город:
    Москва
  • ISBN:
    978-5-389-17644-7
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы. Он утверждает, что, хотя Вселенная, в которой мы живем, по сути своей дика, нам выгоднее считать, что она подчиняется законам Тихонии. Это представление может стать самоисполняющимся пророчеством и создать посреди чрезвычайно бурного моря островок предсказуемости. Делая обзор с зыбких границ между экономикой и теорией сложности, Мерё предлагает распространить область применения точных наук на то, что до этого считалось не поддающимся научному анализу: те непредсказуемые, неповторимые, в высшей степени маловероятные явления, которые мы обычно называем чудесами.
Если вы примете приглашение Ласло Мерё, вы попадете в мир, в котором чудеса — это норма, а предсказуемое живет бок о бок с непредсказуемым. Попутно он раскрывает секреты математики фондовых рынков и объясняет живо, но математически точно причины биржевых крахов и землетрясений, а также рассказывает, почему в «черных лебедях» следует видеть не только бедствия, но и возможности.
(Альберт-Ласло Барабаши, физик, мировой эксперт по теории сетей)

Логика чудес. Осмысление событий редких, очень редких и редких до невозможности — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

По другую сторону границы, в Диконии, есть риск нарваться на всякое. Там можно встретить огромные отклонения от среднего — например, компанию Apple, которая даже после уменьшения капитала возглавляла в 2013 году список корпораций мира, причем по капитализации она более чем вдвое превосходила ближайших преследователей — Shell и IBM. Значения, отстоящие от среднего на сорок стандартных отклонений, встречаются в Диконии сплошь и рядом. По оценочной стоимости Apple опережает «рядовую» гигантскую корпорацию более чем в четыреста раз.

Опытные завсегдатаи пивных могут предсказать, когда начнется драка. Плавное течение разговора внезапно начинает прерываться сердитыми словами. В этот момент равновесие рушится, и уютный мир благовоспитанных посетителей бара, не лезущих в чужие дела, возмущается потасовкой. Нечто подобное происходит и в науке. Можно предсказать, что общепринятая научная модель вот-вот будет поставлена под сомнение, когда обнаруживается все больше и больше явлений, которые эта модель должна, но не может объяснить, и озадаченные ученые начинают высказывать недовольство. Именно из этой озадаченности и возникают радикально новые модели.

Нормальное распределение

Современники немецкого математика Карла Фридриха Гаусса (1777–1855) называли его «принцем математиков» [23] Точнее, Princeps mathematicorum, то есть «первейшим среди математиков» ( лат. ). Слово princeps исходно обозначало первого в списке сенаторов Древнего Рима, а начиная с Октавиана Августа стало титулом римского императора (отчего начальное устройство Римской империи и называют принципатом ). От него произошло и русское слово «принц», и его аналоги в других европейских языках. . Одним из важнейших его открытий было так называемое нормальное распределение, которое называют также гауссианой, гауссовой кривой или, что менее точно, колоколообразной кривой (см. илл. 1). Нормальное распределение оказалось жизненно важным средством описания тихонских явлений. У явлений, распределенных нормально, бо́льшая часть значений находится вблизи среднего, и чем дальше мы отходим от среднего, тем более редкими становятся значения. Например, если нормальная кривая, изображенная на илл. 2, отражает распределение роста венгерских мужчин, то можно ожидать, что около двух третей (68 %) мужчин будут находиться в пределах одного стандартного отклонения от среднего роста, равного 175 см, — то есть будут иметь рост от 168 до 182 см. А отличаться от среднего более чем на три стандартных отклонения, то есть иметь рост более 196 см или менее 154 см, будут менее 0,1 %.

Греческая буква μ (мю), отмечающая середину оси абсцисс, обозначает среднее значение, или, если использовать более точный термин, математическое ожидание . Как видите, в точке μ кривая достигает максимума: это означает, что при нормальном распределении среднее значение и встречается чаще всего. Греческая буква σ (сигма) обозначает стандартное отклонение. Также можно видеть, что для 34,1 % населения измеряемая величина (например, рост) находится между средним значением и значением, превышающим среднее на одно стандартное отклонение. Еще для 34,1 % эта величина ниже среднего на одно стандартное отклонение или меньше. Кроме того, на три стандартных отклонения от среднего отличаются менее 0,2 % населения (один человек из пятисот). Так распределяются величины по гауссовой кривой. Во второй части книги я уделю некоторое время восхвалению ее описательных способностей. Сейчас же достаточно сказать, что это распределение очень хорошо моделирует многие природные явления.

Мой друг Алекс прав относительно чудес, пока речь идет о явлениях, распределенных нормально. Кривая нормального распределения спадает чрезвычайно быстро: на расстоянии четырех стандартных отклонений от среднего значение величины уже настолько близко к нулю, что зазор между кривой и осью абсцисс можно разглядеть только при помощи мощного микроскопа. На расстоянии десяти стандартных отклонений и далее не поможет и микроскоп. Лишь в одном из триллиона триллионов случаев можно ожидать отклонения от среднего, превышающего десять стандартных отклонений.

Поскольку, как выяснилось, гауссова кривая так хорошо описывает столь многие природные явления, казалось разумным применить ее и к явлениям экономическим. В конце концов статистическая идеология, на которой основано гауссово распределение, стала настолько непререкаемой догмой, что в течение приблизительно столетия создателям экономических моделей даже в голову не приходило использовать что-либо другое. Однако оказалось, что распределение Гаусса не вполне отражает механизмы, действующие в экономике. И это относится не только к экономике: за пределами области применимости этой конкретной модели лежат и многие другие явления. Во время финансового кризиса 2008 года я слышал от разных финансовых гуру, что «такого кризиса нельзя ожидать даже раз в десять тысяч лет». Хотя десять тысяч лет мне исполнится еще не скоро, я слышал такие же заявления по меньшей мере раза четыре, а то и пять — например, во время кризисов 1987 и 1998 годов, а также после 11 сентября. Видимо, что-то тут не так.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»

Представляем Вашему вниманию похожие книги на «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Айзек Азимов - Логика есть логика
Айзек Азимов
Отзывы о книге «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности»

Обсуждение, отзывы о книге «Логика чудес. Осмысление событий редких, очень редких и редких до невозможности» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x