В России новые идеи пропагандировал великий основатель русской науки и поэт Михаил Васильевич Ломоносов, выразивший идею бесконечности мира во вдохновенных строках:
Открылась бездна, звезд полна,
Звездам числа нет, бездне — дна.
А поэт А. П. Сумароков изложил эти идеи в ...переводе библейских псалмов. Его соперник Василий Тредьяковский тут же написал донос в святейший синод: "Читая сентябрьскую книжку "Ежемесячных сочинений" 1755 года, нашел я, именованный, в ней оды духовные, сочиненные г. полковником. Александром Петровым, сыном Сумароковым, между которыми и оду, написанную из псалма 106; а в ней увидел, что она с осмыя строфа по первую на десять включительно говорит от себя, а не из псаломника, о бесконечности вселенной и действительном множестве миров, а не о возможном по всемогуществу божиему".
Получив этот донос, святые отцы потребовали от императрицы Елизаветы запрещения журнала "Ежемесячные сочинения", в котором, как они писали, "вере святой (много) противного имеется, особенно некоторые переводы и сочинения находятся, многие, а инде и бесчисленные миры быти утверждающие, что и св. писанию и вере христианской крайне противно есть и многим неутвержденным душам причину к натурализму и безбожию подает".
Но шел восемнадцатый век, и императрица оставила покорнейшее прошение святейшего синода "без последствий".
К концу XVII в. и в астрономии, и в физике, и в математике полную победу одержали идеи, так или иначе связанные с применением бесконечности. Сложилась картина мира, управляемого геометрией Евклида и законами движения Ньютона. Ученые полагали, что, зная положение всех материальных тел в данный момент времени, они смогут предсказать их положение в любой последующий момент — ведь для этого надо лишь решить соответствующие дифференциальные уравнения.
При этом два основоположных камня, на которых возводилось все здание, не имели ничего общего друг с другом. Бесконечное пространство никак не соотносилось с наполнявшей его материей, оно было лишь сценой, на которой разыгрывалась мировая драма. По самой своей сущности это пространство безотносительно к чему бы то ни было внешнему оставалось всегда одинаковым и неподвижным — оно не изменилось бы даже, если бы вся материя неожиданно исчезла. Как писал по этому поводу А. Эйнштейн, "Ньютон обнаружил, что наблюдаемые геометрические величины (расстояния между материальными точками) и их изменения во времени в физическом смысле не характеризуют полностью движения... Следовательно, кроме масс и изменяющихся во времени расстояний между точками существует еще нечто такое, что определяет происходящие события; это "нечто" он воспринимал как отношение к абсолютному пространству".
Успехи ньютонианских механики и астрономии сделали предложенную им картину мира общепринятой. Какие-либо сомнения в ней стали считаться чем-то антинаучным.
Картину Вселенной, принимавшуюся всеми в XVIII в., знаменитый немецкий философ Кант описал следующим образом: "В бесконечной дали существует еще много таких звездных систем, и части ее находятся во взаимной связи... Мы видим первые члены непрерывного ряда миров и систем, и первая часть бесконечной прогрессии уже дает нам представление, каково целое. Здесь нет конца, здесь бездна подлинной неизмеримости... Мировое пространство наполнено мирами без числа и без конца...".
Следует отметить, что признание бесконечности Вселенной мирно уживалось в уме Канта и большинства его современников с верой в бога. А некоторые богословы считали, что для сотворения бесконечной Вселенной нужен более могущественный бог, чем для творения конечного мира, и потому усматривали в бесконечности Вселенной "доказательство всемогущества божия". Понадобились полувековая деятельность Вольтера и энциклопедистов, грозы французской революции, чтобы Лаплас смог ответить Наполеону на вопрос, почему в его сочинении о небесной механике не упоминается бог: "Ваше Величество! У меня не возникла необходимость в этой гипотезе".
Не зря все-таки Аристотель предупреждал о зыбкости и неясности понятия бесконечности, об осложнениях, к которым оно может привести. Вскоре после создания ныотонианской физики и математического анализа в этих науках возникли первые осложнения.
Ученики и последователи Ньютона и Лейбница с необычайной легкостью пользовались расплывчатыми и полными непостижимой загадочности понятиями бесконечно малого и бесконечно большого, решая с их помощью сложнейшие задачи астрономии, физики и механики. Запросто складывали они бесконечные множества слагаемых, не колеблясь, переносили на такие суммы правила действий над конечными суммами. И хотя основные понятия нового исчисления казались туманными для математиков, воспитанных на античной строгости, практические успехи нового исчисления заставляли всех забывать об этом. "Идите вперед, и вера к вам придет", говаривал своим ученикам видный французский математик XVIII в. Д'Аламбер [22] Д'Аламбер Жан (1717-1783) — французский математик, механик и философ, один из создателей математической физики.
.
Читать дальше