Значение математических мостов огромно. Они позволяют сообществам математиков, обитающим на отдельных островах, обмениваться идеями и исследовать то, что удалось создать их коллегам с других островов. Математика состоит из островов знания в море незнания. Например, на одном острове обитают геометры, занимающиеся изучением форм, на другом острове теории вероятностей математики изучают риски и случайность. Существуют десятки других островов, обитатели которых говорят на своем собственном языке, непонятном обитателям других островов. Язык геометрии сильно отличается от языка теории вероятностей, а алгебраическая терминология чужда тем, кто говорит только о статистике.
Большой интерес к гипотезе Таниямы-Шимуры был обусловлен тем, что она наводила мост между двумя островами и позволяла их обитателям впервые говорить друг с другом. Барри Мазур склонен видеть в гипотезе Таниямы-Шимуры устройство, позволяющее осуществлять перевод с одного языка на другой, аналогичное розеттскому камню, надписи на котором были выполнены на трех языках: демотическим египетским письмом, на древнегреческом языке и египетскими иероглифами. Так как демотическое письмо и древнегреческий были понятны, археологи впервые смогли расшифровать египетские иероглифы. «Если один из языков вы знаете, то розеттский камень позволяет вам достичь глубокого понимания другого языка, — говорит Мазур. — Но гипотеза Таниямы-Шимуры — розеттский камень, наделенный определенной магической силой. Гипотеза Таниямы-Шимуры обладает весьма приятной особенностью, которая заключается в том, что простые интуитивные соображения в модулярном мире при переводе превращаются в глубокие истины в эллиптическом мире, и наоборот. Более того, глубокие проблемы в эллиптическом мире иногда решались очень просто при переводе их с помощью нового "розеттского камня" на язык модулярного мира, если удавалось обнаружить в модулярном мире идеи и средства для решения переведенной проблемы. Оставаясь в эллиптическом мире, мы были бы обречены на поражение».
Если бы гипотеза Таниямы-Шимуры оказалась верной, то она позволила бы математикам подходить к решению эллиптических проблем, остававшихся нерешенными на протяжении столетий, с позиций модулярного мира. Была надежда, что область эллиптических уравнений удастся объединить с областью модулярных форм. Гипотеза Таниямы-Шимуры также породила надежду на существование мостов и между другими областями математики. В 60-е годы возможности, заложенные в гипотезе Таниямы-Шимуры, поразили воображение Роберта Ленглендса из Принстонского Института высших исследований. И хотя гипотеза не была доказана, Ленглендс был убежден, что она представляет собой всего лишь один из элементов гораздо более общей схемы унификации. Он считал, что все основные разделами математики взаимосвязаны, и приступил к поиску такого рода связей. Через несколько лет его поиски стали приносить первые результаты. Другие гипотезы о связях между разными разделами математики были гораздо слабее и рискованнее, чем гипотеза Таниямы-Шимуры, но все они сплетались в одну тонкую сеть. Ленглендс мечтал о том, как одна за другой эти гипотезы будут доказаны и возникнет великая единая математика.
Ленглендс охотно обсуждал свой план построения математики будущего (который впоследствии стали называть программой Ленглендса) и пытался привлечь других математиков к участию в доказательстве множества своих гипотез. Никаких путей, ведущих к цели не было видно, но если бы мечта Ленглендса все же осуществилась, то награда была бы грандиозной. Любую неразрешимую проблему в одной области математики можно было бы трансформировать в аналогичную проблему из другой области, где для ее решения имелся бы целый новый арсенал методов. [17] Строго говоря программа Ленглендса относится прежде всего к установлению связей между теорией представлений алгебраических групп, теорией модулярных форм и теорией Галуа глобальных полей.
В случае неудачи эту проблему можно было бы перенести еще в какую-нибудь другую область математики, и так далее — до тех пор, пока наконец она не будет решена. В один прекрасный день, как надеялся автор программы Ленглендс, математики смогут решить самые трудные и тонкие проблемы, перенеся их в более подходящее место математического ландшафта.
Важные следствия программа Ленглендса могла бы иметь и для прикладных наук и техники. Идет ли речь о моделировании взаимодействий между сталкивающимися кварками, или о выяснении наиболее эффективного варианта организации телекоммуникационной сети, часто ключом к решению проблемы служит выполнение математических расчетов. В некоторых разделах физики и техники сложность вычислений столь высока, что служит серьезнейшим препятствием на пути к прогрессу. Если бы математики могли доказать «мостообразующие» гипотезы из программы Ленглендса, то появились бы пути решения не только абстрактных, но и практических проблем реального мира.
Читать дальше