Шимура не мог доказать, что это действительно так, но всякий раз, когда он проверял гипотезу, она неизменно оказывалась верной. Во всяком случае, все происходившее как нельзя лучше вписывалась в его широкую философию математики. «У меня есть своя философия относительно того, что такое хорошо. Математика должна выражать то, что хорошо. Например, в случае эллиптической кривой, ее можно назвать хорошей, если она параметризована модулярной формой. По моим ожиданиям, все эллиптические кривые хорошие. Разумеется, это философия в чистом виде, но ничто не мешает ее принять за исходный пункт. Нужно ли говорить, что в обоснование гипотезы мне приходится изыскивать различные «технические» причины. Я бы сказал, что моя математическая гипотеза появилась из моего представления о том, что такое хорошо. Многие математики занимаются своей наукой из эстетических соображений, и моя философия того, что такое хорошо, также проистекает из моих эстетических соображений».
Собранные Шимурой подкрепляющие данные означали, что гипотеза о связи между эллиптическими кривыми и модулярными формами начала пользоваться более широким признанием. Шимура не мог доказать, что гипотеза верна, но, по крайней мере, никто более не мог утверждать, что, формулируя гипотезу, он выдает желаемое за действительное. В пользу нее теперь свидетельствовало довольно много фактов. Первоначально ее стали называть гипотезой Таниямы-Шимуры в знак признания заслуг человека, впервые высказавшего ее, и его коллеги, который развил ее и придал ей законченный вид.
Андре Вейль, один из крестных отцов теории чисел XX века, принял эту гипотезу и опубликовал ее на Западе. Вейль подверг идею Шимуры и Таниямы подробнейшему анализу и обнаружил еще более фундаментальные данные, свидетельствующие в ее пользу. В результате эту гипотезу стали часто называть гипотезой Таниямы-Шимуры—Вейля, иногда — гипотезой Таниямы—Вейля, а иногда даже гипотезой Вейля. Относительно того, как ее следует правильно называть, было немало дискуссий и споров. Для тех читателей, которые интересуются подобной комбинаторикой, заметим, что все возможные комбинации из трех имен — Таниямы, Шимуры и Вейля — появлялись в печати в течение года, однако я буду ее называть так, как ее назвали в самом начале, — гипотезой Таниямы-Шимуры.
Профессор Джон Коутс, руководитель Эндрю Уайлса в его аспирантские годы, сам был аспирантом в то время, когда гипотезу Таниямы-Шимуры начали обсуждать на Западе. «Я приступил к самостоятельным исследованиям в 1966 году, когда гипотеза Таниямы-Шимуры распространялась по всему миру. Все были потрясены и начали серьезно задумываться над вопросом, все ли эллиптические кривые могут быть модулярными. Время было захватывающе интересным; единственная проблема заключалась в том, что успехи были очень незначительны. Должен честно признаться, что сколь ни красивой была сама идея, доказать ее было очень трудно, и именно это привлекало нас как математиков».
В конце 60-х многие математики только и делали, что занимались проверкой гипотезы Таниямы-Шимуры. Они брали какую-нибудь эллиптическую кривую, вычисляли E -ряд и занимались поиском модулярной формы с таким же M -рядом. И каждый раз находили для данной эллиптической кривой соответствующую ей модулярную форму. И хотя это убедительно свидетельствует в пользу гипотезы Таниямы-Шимуры, доказательством собранные данные считать было нельзя. Математики подозревали, что гипотеза верна, но до тех пор, пока не найдено логическое доказательство, гипотеза оставалась всего лишь гипотезой.
Профессор Гарвардского университета Барри Мазур был свидетелем того, как гипотеза Таниямы-Шимуры обретала все большую известность. «Гипотеза была великолепной (предполагалось, что каждой эллиптической кривой соответствует модулярная форма), поначалу ее игнорировали, так как она опередила свое время. Когда она была выдвинута впервые, ее не восприняли всерьез потому, что она была чересчур удивительна. С одной стороны, вы имеете эллиптический мир, с другой — модулярный мир. Обе эти области математики исследовались интенсивно, но независимо друг от друга. Математики, занимавшиеся изучением эллиптических кривых, могли не быть сведущими в проблемах модулярных форм, и наоборот. И тут появляется гипотеза Таниямы-Шимуры, которая утверждает, что между двумя совершенно различными математическими мирами существует мост. Математики любят наводить мосты».
Читать дальше