1 9 0 3 3 0 9 1
2 7 8 5 3 0 6
———————————————
1 6 2 4 7 7 8 5;
Рѣшается онъ такъ: 4, дополненіе 6-ти до 10-ти, да 1, будетъ 5; 10, дополненіе нуля до 10-ти, да 8, потому что 1 занята, составитъ 18, изъ нихъ 8 пишемъ, а 1 сотню отбрасываемъ, потому что, когда мы брали дополненіе, то для этого намъ необходимо было имѣть сотню, а такъ какъ мы ея не занимали въ уменьшаемомъ, то и счеркиваемъ ее въ остаткѣ. Такъ же поступать надо и въ другихъ подобныхъ случаяхъ, именно когда дополненіе вычитаемаго вмѣстѣ съ разрядомъ уменьшаемаго дастъ болѣе 10-ти, то десятокъ счерки-вается. Способъ Адама Ризе былъ знакомъ его современникамъ, но особаго развитія и распространеиія онъ не получилъ. Онъ очень на-поминаетъ новый, пятый способъ, который помѣщаемъ ниже.
Четвертое правило вычитанія принадлежитъ арабскому ученому Алькальцади изъ Андалузіи (XV в.). Чтобы, напримѣръ, вычесть 287 изъ 573, надо сперва 7 простыхъ единицъ вычесть изъ 3-хъ. Конечно, 7 изъ 3-хъ не вычитается, но прежде чѣмъ занимать десятокъ, Алькальцади задается вопросомъ: много ли недостаетъ къ тремъ для того, чтобы изъ нихъ можно было вычесть семь? Оказывается, недостаетъ четырехъ. И вотъ мы занимаемъ теперь десятокъ изъ 7 десятковъ, раздробляемъ его въ единицы и вычитаемъ столько, сколько не хватало, т.-е. 4, въ остаткѣ будетъ 6. Такимъ же образомъ идетъ вычисленіе и съ десятками, и съ сотнями: 8 изъ 6, недостаетъ двухъ, вычитаемъ 2 изъ 10-ти, будетъ 8 десятковъ; на-конецъ, 2 сотни изъ 4 сотенъ дадутъ 2 сотни, веего 286.
Связь между способами первымъ, третьимъ и четвертымъ мы представимъ для ясности еще разъ на двузначныхъ числахъ. Возьмемъ 41–27. По первому способу необходимо 7 вычитать изъ 11-ти, по третьему 7 вычитается изъ десяти, и къ полученному прибавляется 1, а по четвертому изъ 10-ти вычитается недостатокъ единицы противъ 7-ми. Что касается второго способа, то въ немъ, какъ и въ первомъ, 7 вычитается изъ 11-ти, но за то потомъ, когда идетъ отниманіе десятковъ, не 2 десятка отнимается изъ 3-хъ, а 3 изъ 4-хъ.
Пятый и послѣдній способъ сходенъ по своей основной мысли со способомъ Адама Ризе. Въ немъ прибавляется къ разрядамъ уменьшаемаго дополненіе разрядовъ вычитаемаго, при чемъ дополненіе берется то до 10-ти, то до 9-ти: до десяти тогда, когда надъ цифрой уменьшаемаго не стоитъ точки, которая бы показывала, что здѣсь единица занята, а до 9-ти тогда, когда стоитъ точка. Примѣръ: 731–264. Чтобы произвести это вычитаніе по пятому способу, прибавляемъ къ одной простой единицѣ уменьшаемаго 6, т.-е. дополненіе 4-хъ единицъ вычитаемаго до 10-ти; получится 7. Далѣе беремъ десятки: 3 да 3 составитъ 6, при чемъ вторая тройка представляетъ собой дополненіе 6 десятковъ вычитаемаго до 9-ти, а до 9-ти потому, что надъ десятками уменьшаемаго стоитъ точка, какъ знакъ заниманія. Наконецъ, опредѣляемъ сотни: 7 да 7-мь 14, 4 беремъ, а 1 скидываемъ. Окончательный отвѣтъ будетъ 467. Теперь надо объяснить, почему мы такъ дѣлаемъ, и на чемъ основанъ этотъ способъ. Намъ требовалось отнять 264, а мы не только не стали отнимать, но даже начали прикладывать и приложили всего 7 сотенъ 3 десятка 6 единицъ. На сколько же мы ошиблись, благодаря тому, что вмѣсто отниманія 264-хъ прибавили 736? Очевидно, на 736+264, т. е. ровно на тысячу.
Эту свою ошибку мы и исправляемъ въ самомъ концѣ, отчеркивая у отвѣта тысячу. Если бы намъ данъ былъ примѣръ 34985322— 12467876, то вычисленіе получилось бы такое: 2+4=6, 2+2=4, 3+1=4, 5+2=7, 8+3=11, изъ этого лѣвая единица скидывается, 9+6=15, 4+8=12, 9+3=12, всѣ лѣвыя единины окидываются. Если нужно дѣйствіе производить поскорѣе, то лучше точки ставить не надъ уменьшаемымъ, а надъ вычитаемымъ. И вообще этотъ пятый способъ напоминаетъ собою второй епособъ тѣмъ, что занимаемую единицу можно считать приложенной къ вычитаемому, а не отнятой отъ уменьшаемаго.
Твердое знаніе таблицы умноженія издавна требовалось отъ учениковъ и считалось совершенно необходимымъ. Составителемъ таблицы называютъ греческаго математика Пиѳагора или, вѣрнѣе, одного изъ его позднѣйшихъ учениковъ, новопиѳагорейца Никомаха (въ I ст. по Р. X.). Начиная съ Никомаха ни одинъ авторъ не забываетъ напоминать, что «преимущественно передъ всѣмъ слѣдуетъ хорошо знать таблицу». Авторы старинныхъ русскихъ математнческихъ сборниковъ также помѣщаютъ таблиду, или «границу умножалную» подъ титуломъ «граница изустная большему счету разумъ подаетъ хотящему въ нея зрѣти»; они тоже требуютъ заучиванія: «надобе сіи изустныя слова памятовати и въ памяти крѣпко держати, всегда во устѣхъ обносити, чтобы во умѣ незабыты были». Вотъ стихи изъ Магницкаго:
Читать дальше