Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Здесь есть возможность читать онлайн «Е. Миркес - Учебное пособие по курсу «Нейроинформатика»» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Красноярск, Год выпуска: 2002, Издательство: КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, Жанр: Математика, Технические науки, Программирование, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Учебное пособие по курсу «Нейроинформатика»: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Учебное пособие по курсу «Нейроинформатика»»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены
по данному курсу,
. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (
и
), и
, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Учебное пособие по курсу «Нейроинформатика»», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1. Количественный критерий. Класс, в котором менее N точек считается пустым и полежит удалению. Порог числа точек выбирается из смысла задачи и вида меры близости.

2. Критерий равномерности. Средняя мера близости точек класса от ядра должна быть не менее половины или трети от максимума меры близости точек от ядра (радиуса класса). Если это не так, то класс разбивается на два (порождается еще одно ядро вблизи первоначального).

3. Критерий сферической разделимости. Два класса считаются сферически разделимыми, если сумма радиусов двух классов меньше расстояния между ядрами этих классов. Если классы сферически неразделимы, то эти классы сливаются в один.

Очевидно, что третий критерий применим только в тех случаях, когда ядра классов являются точками того же пространства, что и те точки, которые составляют классы. Все приведенные критерии неоднозначны и могут меняться в зависимости от требований задачи. Так вместо сферической разделимости можно требовать эллиптической разделимости и т. д.

Начальное число классов можно задавать по разному. Например, начать с двух классов и позволить сети «самой» увеличивать число классов. Или начать с большого числа классов и позволить сети отбросить «лишние» классы. В первом случае система может остановиться в случае наличия иерархической классификации (пример 1 из предыдущего раздела). Начиная с большого числа классов, мы рискуем не узнать о существовании иерархии классов.

Другим критерием может служить плотность точек в классе. Определим объем класса как объем шара с центром в ядре класса и радиусом равным радиусу класса. Для простоты можно считать объем класса равным объему куба с длинной стороны равной радиусу класса (объем шара будет отличаться от объема куба на постоянный множитель, зависящий только от размерности пространства). Плотностью класса будем считать отношение числа точек в классе к объему класса. Отметим, что этот критерий применим для любых мер близости, а не только для тех случаев, когда ядра и точки принадлежат одному пространству.

Метод применения этого критерия прост. Разбиваем первый класс на два и запускаем процедуру настройки сети (метод динамических ядер или обучение сети Кохонена). Если плотности обоих классов, полученных разбиением одного класса, не меньше плотности исходного класса, то считаем разбиение правильным. В противном случае восстанавливаем классы, предшествовавшие разбиению, и переходим к следующему классу. Если после очередного просмотра всех классов не удалось получить ни одного правильного разбиения, то считаем полученное число классов соответствующим «реальному». Эту процедуру следует запускать с малого числа классов, например, с двух.

Проведем процедуру определения числа классов для множества точек, приведенного на рис. 10а. Результаты приведены на рис. 18. Порядок классов 1-й класс — черный цвет, 2-й класс — синий, 3-й — зеленый, 4-й — красный, 5-й — фиолетовый, 6-й — желтый.

Рассмотрим последовательность действий, отображенную на рис. 18.

Первый рисунок — результат классификации на два класса.

Второй рисунок — первый класс разбит на два. Результат классификации на три класса. Плотности увеличились. Разбиение признано хорошим.

Рис. 18. Результат применения критерия плотности классов для определения числа классов к множеству точек, приведенному на рис. 10а.

Третий рисунок — первый класс разбит на два. Результат классификации на четыре класса. Плотности увеличились. Разбиение признано хорошим.

Четвертый рисунок — первый класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.

Пятый рисунок — второй класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.

Шестой рисунок — третий класс разбит на два. Результат классификации на пять классов. Плотности увеличились. Разбиение признано хорошим.

Седьмой рисунок — первый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Восьмой рисунок — второй класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Девятый рисунок — третий класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Учебное пособие по курсу «Нейроинформатика»»

Представляем Вашему вниманию похожие книги на «Учебное пособие по курсу «Нейроинформатика»» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Учебное пособие по курсу «Нейроинформатика»»

Обсуждение, отзывы о книге «Учебное пособие по курсу «Нейроинформатика»» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x