Я нисколько не сомневался в том, что мне удастся добраться до сути вещей, просто потому, что дал себе труд, подойти к ней поближе, подставить ухо и записывать черным по белому все, что мне говорилось, по мере того как слова звучали ясней. Интуиция в отношении объема, скажем, была неопровержимой. Она не могла быть ничем иным, как отражением действительности , подчас ускользающей, но совершенно надежной и настоящей. Вот эту самую действительность и требовалось уловить — наверное, как ту волшебную сущность рифмы, схваченную и «понятую» однажды. Когда я приступал к этому, семнадцати лет от роду и едва закончив лицей, то думал, что работа займет несколько недель. Я застрял на три года. В итоге я умудрился даже завалить в конце второго курса экзамен по сферической тригонометрии (с «углубленным астрономическим уклоном», sic!) из-за дурацкой ошибки в счете. (Я никогда не был особенно силен в вычислениях, с тех пор как вышел из лицея…) В связи с этим мне пришлось, чтобы закончить свой диплом, остаться на третий год в Монпелье вместо того, чтобы тотчас же ехать в Париж — только там, как меня уверяли, мне выпадет случай повстречать людей, которые были бы в курсе всего реально происходящего в математике. Месье Сула — тот, кто мне все это рассказывал — убеждал меня также, что последние проблемы, которые еще поднимались в математике, были разрешены двадцать или тридцать лет назад неким Лебегом. Он разработал как раз (решительно, удивительное совпадение!) теорию меры и интегрирования, чем и поставил завершающую точку в математике.
Месье Сула, мой профессор «дифференциального исчисления», был человеком доброжелательным и хорошо ко мне относился. Не думаю, чтобы он сколько-нибудь меня разуверил. Должно быть, во мне уже поселилось предвидение того, что математика есть нечто беспредельное по глубине и широте. Есть ли у моря «завершающая точка»? Во всяком случае, мне и в голову не приходило, что я должен пойти разыскать книгу этого Лебега, о которой говорил мне месье Сула, хотя сам и не держал никогда ее в руках. По моим представлениям, между тем, что могло содержаться в книге, и той работой, которую делал я, по-своему , чтобы удовлетворить свое любопытство не было ничего общего.
2. О том, как важно быть одному
Когда, год или два спустя, я наконец установил связь с математическим обществом в Париже, я узнал среди многого другого, что труд, завершенный мною в моем углу, своими силами и подручными средствами, представлял собой (за небольшим только исключением) нечто, прекрасно известное «всему миру» под названием «Лебеговской теории меры и интеграла». В глазах двух или трех старших математиков, с которыми я говорил об этой работе (и даже показывал рукопись), это была почти что потеря времени, переоткрытие «уже известного». Не припомню, впрочем, чтобы я был разочарован. В ту пору идея заслужить «признание», в виде одобрения или хотя бы интереса других людей к тому, чем я занимался, была еще чужда мне по духу. Кроме того, моя энергия в достаточной мере уходила на освоение в совершенно новой среде, и в первую очередь на изучение того, что в Париже считалось азбукой для математика [5] Я поместил короткий рассказ об этом переходном периоде, довольно трудном, в первой части «РС», в разделе «Желанный иностранец».
.
Однако, вспоминая сейчас эти три года, я прихожу к выводу, что они отнюдь не были растрачены понапрасну. Сам того не зная, тогда, в одиночестве, я научился тому, что составляет суть математического ремесла, и чего заведомо не смог бы преподать мне ни один мастер. При том, что никто мне этого не говорил, при том, что я ни разу не встретил никого, кто делил бы со мной жажду знаний, я все же понял «нутром», так сказать, что я — математик: тот, кто занимается математикой, в полном смысле этого слова, так, как «занимаются» любовью. Математика стала для меня возлюбленной, всегда благосклонной к моим желаниям. Эти годы одиночества заложили основу веры в себя, которая никогда потом не была поколеблена — ни когда я обнаружил (по прибытии в Париж, двадцати лет от роду) всю глубину моего невежества и беспредельность того, что мне предстояло изучить, ни двадцатью годами позже (бурными событиями, связанными с моим безвозвратным уходом из математического общества), ни в эти последние годы, эпизодами подчас нелепыми до безумия — неких «Похорон» (преждевременных, но чисто разыгранных) моих собственных и моего труда, устроенных моими же, в прошлом, ближайшими товарищами…
Читать дальше