Как же оценить влияние подобного стиля на ничего не подозревающего читателя? Что происходит в душе школьника, изучающего теорему Пифагора или квадратные уравнения? Какие мысли приходят в голову сотруднику исследовательского института или университета, в котором наделяют «высшим» (имеющий уши да слышит!) образованием, когда он бьется над статьей того или иного авторитетного коллеги? Такие ситуации в жизни каждого школьника, студента или даже научного работника, повторяются сотни, тысячи раз; легко себе представить, как они воздействуют на образ мыслей незадачливого читателя. Бытующие стереотипы — в семье, как и в любом другом окружении — лишь усугубляют эффект. Он проявляется на каждом шагу, и заметить это нетрудно, стоит лишь присмотреться. Он заключается в том, что у человека мало-помалу формируется убеждение в собственном ничтожестве по сравнению со значительностью и компетентностью «знающих» людей, тех, которые «все это делают».
С тем, чтобы это внутреннее убеждение как-то уравновесить, некоторые люди развивают в себе способность запоминать вещи, которые на самом деле им непонятны. Они могут, например, с виртуозной ловкостью перемножить две матрицы или «выстроить» по всем правилам сочинение на французском языке, с «тезами» и «антитезами»… Словом, речь идет о способности попугая (или ученой обезьяны), которая в наши дни ценится, как никогда. Она не помогает избавиться от ощущения собственной ничтожности, о котором я говорил; зато и вознаграждается она не куском сахара, как в цирке, а желанными дипломами и хорошей карьерой.
Но такой человек, даже если он покрыт почестями с ног до головы и купается в дипломах, как в золоте, в глубине души не обманывается на счет этих фальшивых признаков собственной важности и «ценности». И даже тот, кто (редкое везение) в свое время поставил на верную карту, последовал своему истинному таланту и сумел проявить себя в творчестве, не знает свободы от подобных сомнений. Внезапный расцвет научной славы — событие, которое зачастую служит ему, чтобы вернее обманывать себя и других — в глубине души не разубеждает его, не придает ему уверенности. Так, одно и то же сомнение точит душу заслуженного ученого и безнадежного тупицы; одна и та же тайная мысль, в которой они ни на минуту не смеют себе признаться.
Это сомнение, это невысказанное внутреннее убеждение, и побуждает каждого из ученых беспрерывно пытаться превзойти самих себя — домогаться новых и новых почестей, любой ценой публиковать как можно больше работ — копить заслуги, не боясь зачахнуть над своими сокровищами… Они всеми силами стараются перенести на других людей (прежде всего, на тех, кто так или иначе от них зависит) втайне грызущее их презрение к самим себе, в тщетной попытке укрыться от его мучительных уколов. Оттого-то и приходится им собирать доказательства своего превосходства над другими — отчаянно, без остановки (2).
Воспользовавшись тем, что в моей работе над разделом «В погоне за стеками» выдался трехмесячный перерыв, снова берусь за «Введение». На этом самом месте я остановился в июне прошлого года. Только что я внимательно перечел все, что уже было написано, и добавил несколько примечаний.
Работая над этим введением, я с самого начала ясно осознавал, что, предлагая читателю размышления подобного рода, без недоразумений не обойдешься. И нет смысла пытаться оговорить все заранее: это привело бы только к нагромождению новых несуразиц. Так что я лишь добавлю по этому поводу, что объявлять войну научному стилю изложения, освященному тысячелетней традицией, отнюдь не входит в мои намерения. Я сам прилежно практиковал этот стиль больше двенадцати лет кряду, и добивался, чтобы мои ученики овладели им, как важным секретом математического ремесла. К худу ли, к добру ли, но в этом смысле мои взгляды нисколько не изменились, так что излагать свои мысли в традиционно-научном стиле я обучаю студентов и сейчас. Это, наверное, даже несколько старомодно с моей стороны — всегда настаивать на том, чтобы всякая работа непременно доводилась до конца, вручную, и так, чтобы в тексте не оставалось ни одного неясного места. Если, в ходе последних десяти лет, мне и приходилось порой отступаться от этого принципа, то уж во всяком случае не по своей вине! «Приведение результатов в надлежащий вид» было и остается для меня важным этапом математической работы. Научная строгость изложения — это, с одной стороны, инструмент первооткрывателя; его удобно использовать, когда хочешь проверить свою догадку. При работе с ним приблизительное, отрывочное поначалу представление о тех или иных вещах становится глубже. С другой стороны, этот же инструмент служит для передачи другим достигнутого тобой понимания. С профессиональной точки зрения, соблюдение норм строгости при передаче информации, то есть научный способ изложения (а он вполне позволяет набрасывать перед читателем широкие картины, открывая дальние перспективы) в известном смысле сильно облегчает работу. Преимущества очевидны: краткость, ясность, удобство ссылок. Они более чем реальны, и пользу, которую они нам приносят, трудно переоценить, когда речь идет, скажем, о докладе перед математической аудиторией — в особенности если он ориентирован на математиков, знакомых с предметом из первых рук или занимающихся смежными вопросами.
Читать дальше