9. Форма и структура, или голоса вещей
Непредвиденным образом, данное «предисловие» слово за слово превратилось в эдакое представление, по всем правилам, моего труда, предназначенное главным образом для читателя — не математика по профессии. Это обязывает, и потом, я уже слишком вовлечен в игру, чтобы можно было пойти на попятный; что же мне еще остается, как не покончить с «церемониями»! Я хотел бы сказать худо-бедно хотя бы несколько слов о сущности этих волшебных «концепций» (или «ключевых тем»), которым я дал блеснуть на предыдущих страницах, и о природе этого славного «видения», в котором всем основным идеям предписано слиться. Ввиду невозможности прибегнуть здесь к языку сколько-нибудь техническому, образ, который мне удалось бы сейчас вызвать на бумагу, выйдет, без сомнения, чрезвычайно расплывчатым (если только под его личиной не прокрадется в текст что-нибудь старое, привычное…) [32].
Традиционно различают три рода «свойств», или «аспектов» тех или иных явлений во Вселенной, составляющих предмет математических рассуждений. Это суть число [33], размер и форма . О них можно также говорить как об «арифметическом», «метрическом» (или «аналитическом») и «геометрическом» аспектах. В большинстве ситуаций, исследуемых в математике, эти три аспекта присутствуют одновременно, находясь в тесном взаимодействии. При этом, однако, чаще всего имеет место заметное преобладание одного из них над двумя другими. Мне кажется, что для большинства математиков достаточно ясно (тому, кто знаком с ними или просто в курсе их работ), кто они по натуре: «арифметики», «аналитики» или «геометры» — даже о том из них, у кого на скрипке много струн, так что ему доступны всевозможные регистры и диапазоны.
Мои первые, уединенные, размышления над теорией меры и интегрирования совершенно недвусмысленно относятся к разделу «размер», или «анализ». Так же обстоят дела с первой из новых тем, введенных мной в математику (которая представляется мне менее обширной по масштабу, чем остальные одиннадцать). То, что я вступил в математику с «бокового подъезда» анализа, представляется мне обусловленным не столько склонностью моей натуры, сколько «случайным стечением обстоятельств». Именно, пробел в образовании, предложенном мне как в лицее, так и в университете (чересчур огромный для моего духа, одержимого страстью к обобщенности и строгости рассуждений) оказался связанным с «метрическим», или «аналитическим» аспектом сути вещей.
1955 г. отмечает решающий поворот в моих математических занятиях: переход от «анализа» к «геометрии». Мне вспоминается еще захватывающее ощущение (конечно, целиком субъективное), как будто я покинул угрюмые, засушливые степи, чтобы вдруг обрести вновь «землю обетованную» с ее сказочными богатствами, готовыми приумножиться беспредельно, повсюду, где захочешь приложить руку — срывай вволю цветы и фрукты, копай руды… И вот это ощущение захлестывающего, сверх всякой меры [34]изобилия с годами лишь подтвердилось, еще углубившись; да оно и сейчас со мной.
Выходит, если есть в математике что-то одно, что (во все времена, без сомнения) увлекало бы меня сильней, чем все остальное, то это не «число» и не «размер», но неизменно форма . И среди тысячи и одного призрака, ищущих формы, чтобы нам открыться, тот, кто околдовал меня пуще всех прочих (не ослабляя и теперь своих чар) — структура , таящаяся внутри математических объектов.
Структура вещи — совсем не что-то такое, что мы могли бы «изобрести». Мы можем лишь выводить ее на свет терпеливо, смиренно; знакомясь с ней, ее раскрывать . Если есть в этой работе изобретательность, если когда и приходится нам браться за труд кузнеца или неутомимого строителя, то отнюдь не затем, чтобы «выковывать» или «строить» структуры . Они-то не нуждаются в нас, чтобы существовать — и быть в точности такими, как они есть! Но выразить , оставаясь как можно более верными духу, то, над раскрытием и изучением чего мы усердно бьемся, ту структуру, что дается нам неохотно — вот за чем мы бредем, пробираясь на ощупь, пробуя языки (а слышен, быть может, лишь лепет), чтобы подступиться к ней. Так и приходится нам постоянно изобретать язык , способный все тоньше и искусней передать словами структуру, присущую математическому объекту, и «строить» с помощью этого языка, постепенно и целиком, «теории», которые должны дать отчет о том, что мы поняли и увидели. Маятник движется без остановки между пониманием вещей и выражением понятого на языке, который отшлифовывает и пересоздает сам себя в процессе работы, под постоянным давлением насущной необходимости.
Читать дальше