8. Профессиональная честность — и контроль над информацией
( 25). Кроме этого разговора с Дьедонне, за всю мою жизнь как математика я не помню ни одного случая, чтобы при мне обсуждались в какой бы то ни было форме вопросы профессиональной этики. Сам я не задумывался о «правилах игры» и, кажется, никто из моих друзей об этом не заговаривал. (Здесь я не беру в расчет дискуссий о том, вправе ли ученые сотрудничать с военным министерством. В начале 70-х вокруг движения «Survivre et Vivre» такие разговоры велись в изобилии. Они, однако же, не имели прямого отношения к жизни математиков в рамках научной среды. Многие мои друзья, в том числе Шевалле и Гедж, считали, что в ту пору, особенно поначалу, я придавал слишком много значения «военному вопросу» (к которому я и впрямь был особенно чувствителен), не замечая более насущных проблем — как раз таких, о которых говорится на этих страницах.) С учениками я также никогда об этом не беседовал. Насколько я понимаю, по умолчанию всеми и всюду принималось одно-единственное правило (к которому, собственно, и сводилась этика ремесла): не выдавать намеренно чужих идей за свои. Это соглашение насчитывает века; мне думается, ни в одной научной среде его, вплоть до наших дней, еще никто не оспаривал. Но если не прибавить к нему второго правила, о праве всякого ученого предать гласности свои идеи и результаты, оно становится мертвой буквой. В современном научном мире те, кто стоят у власти, держат в своих руках всю научную информацию. Это — неограниченный контроль: теперь он уже не уравновешивается никаким соглашением, подобным тому, о котором говорил Дьедонне (и которое, возможно, даже в лучшие времена не распространялось за пределы узкого круга математиков). Ученый, занимающий высокое положение в научном мире, получает столько информации, сколько сочтет нужным (а зачастую и сверх того). В его власти не пропустить в печать большую часть работ со словами: «неинтересно», «более или менее известно», «тривиально» и проч. — и, однако же, использовать приобретенные знания с выгодой для себя. Я возвращаюсь к этому в примечании (27).
( 26). «Члены-основатели» Бурбаки — это Анри Картан, Клод Шевалле, Жан Дельсарт, Жан Дьедонне, Андре Вейль. Все они живы, кроме Дельсарта, преждевременно ушедшего от нас в пятидесятые годы. В его время этика ремесла, как правило, все еще соблюдалась.
Перечитывая эти страницы, я боролся с искушением вычеркнуть абзац, в котором я будто бы объявляю одних — порядочными, других — бесчестными, не спрашивая, интересует ли их мое мнение на этот счет. А ведь я решительно не вправе здесь никого судить. Настороженность, которую может вызвать у читателя этот абзац, безусловно, оправдана. Я все же его сохранил, заботясь об аутентичности своего свидетельства. Кроме того, этот отрывок правдиво передает мои ощущения, даже если они не слишком уместны.
9. «Юношеский снобизм», или поборники чистоты
( 27). Рони Браун как-то пересказал мне слова своего учителя Дж. Г. К. Уайтхеда. Уайтхед удивлялся «снобизму молодых людей, которые считают, что теорема тривиальна, если у нее есть простое доказательство». Многим из моих прежних друзей было бы полезно над этим призадуматься. В наши дни к такому «снобизму» тяготеют не только молодые: я знаю несколько весьма авторитетных математиков, рассуждающих о «тривиальности» именно так. Меня это задевает за живое: ведь лучшее из того, что я сделал в математике (да и в жизни вообще…), по этой логике становится «тривиальным». Самые плодотворные (на мой взгляд) из тех структур и понятий, которые я за все эти годы ввел в математический обиход, их наиболее существенные свойства, которые мне удалось установить упорным, терпеливым трудом, — все это просто, все «тривиально». (По всей вероятности, в наши дни ни одна из моих находок не попала бы в CR, будь ее автор начинающим математиком!) Моя гордость в математике, а вернее — моя страсть и радость, всегда заключалась в умении обнаруживать очевидное ; к этому я и стремился всю жизнь в своих занятиях. Страницы этой книги (вместе с настоящей вводной главой) — отнюдь не исключение. Зачастую все решает то мгновение, когда ты видишь вопрос, которым еще никто не задавался (найден ли ответ, и каким он будет — не так уж важно) или когда ты приходишь к утверждению (пускай лишь гипотетическому), которое полностью описывает совершенно новую математическую ситуацию. И тогда уже не имеет особого значения, простым или сложным окажется доказательство. Даже если поначалу, на скорую руку, ты набросаешь его неверно — пустяки, это не главное. То, о чем говорил Уайтхед — это снобизм пресыщенного гуляки, который в гостях не отведает вина, пока не убедится, что оно дорого обошлось хозяину. В последние годы, заново охваченный забытой было страстью к математике, я не раз предлагал моим прежним друзьям разделить со мною лучшие из моих находок — но лишь с тем, чтобы услышать в ответ голоса пресыщенности и безразличия. Отказ причинял мне боль; где-то в глубине она еще не утихла. Воспоминания о тех невеселых минутах по сей день обдают меня холодом, и дразнят ушедшим теплом обманутой радости. Ну что же, я ведь из-за этого не остался на улице, у меня есть крыша над головой. Я же не пытался, слава Богу, пристроить свои работы в какой-нибудь почтенный журнал.
Читать дальше