О. ОРЕ - Приглашение в теорию чисел

Здесь есть возможность читать онлайн «О. ОРЕ - Приглашение в теорию чисел» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1980, Издательство: Наука Главная редакция физико-математической литературы, Жанр: Математика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Приглашение в теорию чисел: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Приглашение в теорию чисел»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного норвежского математика О. Оре раскрывает красоту математики на примере одного из ее старейших разделов — теории чисел. Изложение основ теории чисел в книге во многом нетрадиционно. Наряду с теорией сравнении, сведениями о системах счисления, в ней содержатся рассказы о магических квадратах, о решении арифметических ребусов и т. д. Большим достоинством книги является то, что автор при каждом удобном случае указывает на возможности практического применения изложенных результатов, а также знакомит читателя с современным состоянием теории чисел и задачами, ещё не получившими окончательного решения.

Приглашение в теорию чисел — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Приглашение в теорию чисел», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Предположим, что мы изменили наше основание на число b и допустим ту же самую вместимость для представления чисел. В таком случае на каждой прямой будет от 0 до b — 1 спичек, следовательно, в среднем 1/2 ( b — 1) из всего количества спичек. Как мы упоминали несколько раз, мы будем иметь приблизительно n /lg b прямых. Отсюда делаем вывод, что среднее время, требуемое для представления числа с n знаками, составляет примерно

n /lg n 1/2 • ( b — 1) = 1/2 E

секунд, здесь Е есть выражение из (6.4.4). Так как это время было минимальным для b = 2, мы также можем сделать вывод:

среднее время, необходимое для установления числа с помощью спичек на прямых, минимально для b = 2.

Система задач 6.4.

1. Постройте графики функций y = f ( b ) из (6.4.3) и у = g ( b ) из (6.4.5) для b > 1. Если вы уже знакомы с дифференциальным исчислением, используйте его для определения формы кривых.

§ 5. Компьютеры и их системы счисления

До появления электронных вычислительных машин всюду при вычислениях безраздельно господствовала десятичная система. Интерес к другим системам носил либо исторический, либо познавательный характер. Существовало лишь несколько отдельных задач, которые наиболее удачно формулировались с использованием двоичной или троичной систем счисления. Одним из излюбленных примеров в книгах по теории чисел является игра «Ним» [10] При игре в «Ним» раскладывается некоторое количество камешков в несколько кучек. Двое играющих по очереди берут камешки из кучек, при ходе можно брать произвольное количество камней, но только из одной кучки. Выигрывает игрок, взявший последний камень. ( Прим. перев .) . К тому времени, когда появилось много различных типов компьютеров, возникла задача сделать устройство ЭВМ как можно более компактным и эффективным. Это привело к тщательному изучению систем счисления с целью нахождения более подходящей системы. По ряду причин, некоторые из которых мы обсудили в предыдущем параграфе, двоичная система была признана предпочтительной. Единственным ее недостатком явилось то, что для большинства из нас требуются немалые усилия для того, чтобы чувствовать себя в ней «как дома», так как мы были воспитаны в других традициях. Следовательно, поскольку числа, которые должны вводиться в компьютеры, обычно записаны в десятичной системе, то требуется начальное устройство, переводящее их в двоичную систему, а ответы в конце концов должны быть выражены в десятичной системе, как уступка менее математически подготовленным членам общества.

Разумеется, двоичная система, используемая в ЭВМ, является той же самой системой, которую мы обсуждали в предыдущем параграфе, однако используемая терминология носит более технический оттенок. Двоичные цифры 0, 1 называются битами, что является сокращением английского выражения Binary digiTs (двоичные цифры). Так как существуют лишь две возможности: 0 и 1 в каждой позиции, то часто говорят об элементе с двумя состояниями.

Если следовать общему правилу, изложенному в § 2 этой главы, то представление данного числа в двоичной системе довольно просто. Например, возьмем N = 1971. Повторное деление на b = 2 дает

1971 = 985 • 2 + 1,

985 = 492 • 2 + 1,

492 = 246 • 2 + 0,

246 = 123 • 2 + 0,

123 = 61 • 2 + 1,

61 = 30 • 2 + 1,

30 = 15 • 2 + 0,

15 = 7 • 2 + 1,

7 = 3 • 2 + 1,

3 = 1 • 2 + 1,

1 = 0 • 2 + 1,

Следовательно,

1971 10= (1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1) 2.

Ранее мы отмечали, что в двоичной системе числа имеют более длинные выражения, следовательно, становится труднее с первого взгляда оценить величину числа. По этой причине в языке ЭВМ часто используется восьмеричная система счисления (с основанием 8). Это является лишь незначительным изменением двоичной системы, которое получается разбиением бит в числе на группы по три. Это можно представить себе как систему с основанием

b = 8 = 2 3.

Коэффициентами при этом являются восемь чисел

0 = 000, 4 = 100, 1 = 001, 5 = 101, 2 = 010, 6 = 110, 3 = 011, 7 = 111.

В качестве иллюстрации возьмем число 1971 из рассмотренного выше примера; в восьмеричной системе оно представляется как

1971 = 011, 110, 110, 011 = (3, 6, 6, 3) 8.

Таким образом, этот способ записи незначительно отличается от предыдущего. В действительности, такое деление на группы нам хорошо знакомо по обычным десятичным числам: при записи и произнесении большого числа мы обычно делим его цифры на группы по три, например,

N = 89 747 321 924.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Приглашение в теорию чисел»

Представляем Вашему вниманию похожие книги на «Приглашение в теорию чисел» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Приглашение в теорию чисел»

Обсуждение, отзывы о книге «Приглашение в теорию чисел» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x