Объяснение. Если названная сумма меньше или равна 12, то для получения ответа нужно просто разделить ее на 2. Если же сумма больше 12, то показывающий сначала вычитает из нее 12, а затем уже делит остаток на 2.
Существует много математических фокусов, в которых мелкие предметы используются просто как счетные единицы. Сейчас мы опишем несколько фокусов, для которых особенно удобны спички, хотя годятся и другие мелкие предметы, например монеты, камешки или листочки бумаги.
Три кучки спичек
Показывающий поворачивается спиной к аудитории, а кто-нибудь из присутствующих кладет на стол три кучки спичек так, чтобы число спичек в кучках было одинаковым и большим трех в каждой. Зритель называет какое-нибудь число от 1 до 12. Показывающий просит зрителя перераспределить некоторым (специальным) образом спички в кучках. При этом, хотя показывающий и не знал первоначального числа спичек в кучках, в средней кучке оказывается заданное количество спичек.
Объяснение. Вначале зрителя просят взять по три спички из крайних кучек и перенести их в среднюю. Затем он должен сосчитать оставшиеся спички в одной из крайних кучек, взять это число спичек из средней кучки и перенести их в любую крайнюю. Так как после этого в средней кучке всегда остается 9 спичек [16] Обозначим первоначальное число спичек через d . После первой операции в крайних кучках останется по d — 3 спичек, а в средней их станет d + 6. После второй операции, состоящей в переносе d — 3 спичек из средней кучки в крайнюю, в средней останется ( d + 6) + ( d — 3) = 9 спичек.
), то теперь уже совсем просто получить в ней заданное число спичек (для этого потребуется только одна передвижка).
Сколько спичек зажато в кулаке?
На аналогичном принципе основан следующий фокус, для показа которого необходим коробок с 20 спичками. Показывающий, повернувшись спиной к зрителю, просит его вытянуть из коробка несколько спичек (не больше десяти) и положить в карман. Затем зритель пересчитывает оставшиеся в коробке спички. Допустим, их 14. Это число он «выписывает» на столе следующим образом: единица изображается одной спичкой, положенной слева, а четверка — четырьмя спичками, положенными несколько правее. Эти пять спичек берутся из числа оставшихся в коробке.
После этого спички, изображавшие число 14, также кладутся в карман. В заключение зритель вынимает из коробка еще несколько спичек и зажимает их в кулаке.
Показывающий поворачивается лицом к зрителям, высыпает спички из коробки на стол и сразу называет число спичек, зажатых в кулаке.
Объяснение. Чтобы получить ответ, нужно вычесть из девятки число спичек, рассыпанных на столе [17] Тот же принцип, который был отмечен в примечании 16 ).
).
Кто что взял?
Еще один старинный фокус можно показать на 24 спичках, которые складываются кучкой рядом с тремя небольшими предметами, скажем, монетой, кольцом и ключиком. В фокусе просят принять участие трех зрителей (будем называть их условно 1, 2, 3).
Первый зритель получает одну спичку, второй — две, третий — три. Вы поворачиваетесь к ним спиной и просите каждого взять по вещице из лежащих на столе (обозначим их А, Би В).
Предложите теперь зрителю, держащему предмет А, взять ровно столько спичек из числа оставшихся в кучке, сколько у него на руках. Зритель, взявши Б, пусть возьмет дважды столько спичек, сколько у него на руках. Последнему зрителю, взявшему предмет В, предложите взять четырежды столько спичек, сколько у него на руках. После этого пусть все три зрителя положат свои предметы и спички в карманы.
Обернувшись к зрителям и взглянув на оставшиеся спички, вы сразу же говорите каждому зрителю, какой предмет он взял.
Объяснение. Если остается одна спичка, то зрители 1, 2 и 3 взяли соответственно предметы А, Би В(именно в таком порядке).
Если осталось 2 спички, то порядок предметов будет Б, А, В.
Если осталось 3 спички, то А, В, Б.
Если 4 спички, то кто-то ошибся, так как подобный остаток невозможен.
Если 5, то порядок предметов будет Б, В, А.
Если 6, то В, А, Б.
Если 7, то В, Б, А [18] Математическая суть этого фокуса состоит в том факте, что сумма 2q + 3r + 5s получает шесть различных значений, когда q, r, s принимают значения 1, 2, 3 или какую-нибудь их перестановку. Между прочим, коэффициенты 2, 3, 5 — не наименьшие из возможных в этом фокусе. Можно было бы использовать с тем же успехом, например, коэффициенты 1, 3, 4 ( А совсем не берет спичек, Б берет дважды столько, сколько у него на руках, В — трижды столько); при этом все суммы не превосходят 19, т. е. можно ограничиться 19 спичками.
).
Читать дальше