Владимир_Андреевич Успенский - Апология математики, или О математике как части духовной культуры

Здесь есть возможность читать онлайн «Владимир_Андреевич Успенский - Апология математики, или О математике как части духовной культуры» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Апология математики, или О математике как части духовной культуры: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Апология математики, или О математике как части духовной культуры»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Апология математики, или О математике как части духовной культуры — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Апология математики, или О математике как части духовной культуры», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

C большим трудом в сознание математиков проникало убеждение, что скорее всего сформулированное в аксиоме о параллельных утверждение вообще нельзя доказать. Осознать это было трудно ещё и потому, что вплоть до самого конца XIX века какой-либо чёткой системы аксиом геометрии вообще не существовало. Для аксиомы о параллельных решающим оказалось третье десятилетие XIX века. В этот период два великих геометра - российский математик Николай Иванович Лобачевский и венгерский математик Янош Бойаи (по-русски часто пишется “Больяй”) - совершенно независимо друг от друга построили геометрическую теорию, основанную на отрицании аксиомы о параллельных. Эту теорию называют геометрией Лобачевского - Бойаи или же просто геометрией Лобачевского(предполагаю, что в Венгрии она называется геометрия Бойаи ). Первые публикации по геометрии Лобачевского принадлежат её авторам: Лобачевскому - в 1829 году, Бойаи - в 1832 году. Их предшественником можно считать немецкого юриста Швейкарта, который пришёл к мысли о возможности такой геометрии в 1818 году, но ничего не публиковал. “Король математиков” великий Гаусс, о котором уже было сказано в главе 5 о квадратуре круга, пришёл к этой мысли ещё раньше, но тоже ничего не публиковал, справедливо полагая, что научная общественность ещё не готова воспринять столь смелые мысли. И действительно, геометрия Лобачевского не получила признания современников (за исключением Гаусса, который её оценил и даже выучил русский язык, чтобы читать сочинения Лобачевского в подлиннике). Гениальность Лобачевского и Бойаи была признана только после их смерти (случившейся соответственно в 1856 и 1860 годах). Когда же, наконец, возможность неевклидовой геометрии была осознана, это произвело переворот не только в математике, но и в философии.

В геометрии Лобачевского много непривычного для нас, воспитанных на евклидовой геометрии. Например: сумма углов треугольника своя у каждого треугольника и притом всегда меньше 180 градусов; если треугольники подобны, то они равны; не бывает треугольников сколь угодно большой площади (это значит, что площадь треугольника не может быть больше некоторого числа, зависящего, разумеется, от выбора единицы площади).

Кажется естественным вопрос, какая же из аксиом всё же истинна - аксиома Евклида или аксиома Лобачевского. Давайте разберёмся. Здесь мы вынуждены обратиться к проблемам философским. Прежде всего надо понять, что значит “истинна”. Казалось бы, ясно: истинна - значит, соответствует реальному положению вещей. Как там, в реальном мире, - одна параллельная прямая или много? А никак, потому что в реальном мире вообще нет прямых - как нет и других объектов геометрии. Геометрических шаров, например, в природе не бывает, а бывают лишь предметы, приближающиеся по форме к геометрическому шару; при этом арбуз в меньшей степени шар, чем волейбольный мяч, а мяч - в меньшей степени шар, чем биллиардный шар или подшипник. С прямыми дело обстоит ещё сложнее: ведь прямая бесконечна, а все примеры, которые мы можем предъявить, будь то линия, начерченная на песке или бумаге, или натянутая нить, или граница между стеной и потолком - все они демонстрируют нам (опять-таки, разумеется, приблизительно) лишь ограниченные, конечные участки прямых линий, то есть то, что на языке современной геометрии называется отрезками. Да даже и отрезков в точном геометрическом смысле в природе не существует: самая тонкая нить имеет толщину, самая отшлифованная поверхность лишь приближается к идеальной форме, а под электронным микроскопом выглядит как рябь. Луч света - и тот искривляется в реальном пространстве. Для возникновения же представления о бесконечной прямой одного только наглядного способа недостаточно - требуется ещё и воображение. От зарождения геометрии прошли тысячелетия, пока люди осознали, что мы не можем непосредственно наблюдать точки, прямые, отрезки, плоскости, углы, шары и прочие геометрические объекты, и потому предметом геометрии служит не реальный мир, а мир воображаемый, населённый этими идеальными геометрическими объектами и который всего лишь похож на мир реальный (по терминологии некоторых философских школ, является отражением реального мира).

“Поверхности, линии, точки, как их определяет Геометрия, существуют только в нашем воображении”, - писал в 1835 году Лобачевский во вступлении к своему сочинению “Новые начала геометрии с полной теорией параллельных”. Аксиомы геометрии как раз и уточняют свойства этих существующих в нашем воображении понятий. Значит ли это, что мы можем написать какие угодно аксиомы? Нет, если мы хотим, чтобы геометрические понятия отражали наши представления о реальном физическом пространстве. Потому что хотя точки, прямые, поверхности не существуют реально, некие физические объекты и явления, приводящие к этим понятиям, безусловно существуют (если вообще признавать реальное существование окружающего нас мира). Поэтому вопрос надо ставить так: какая из аксиом, Евклида или Лобачевского, точнее описывает те представления о структуре реального физического пространства, которые отражаются в геометрических образах? Строгий ответ на это вопрос таков: неизвестно. Однако можно с уверенностью утверждать, что в доступных нашему наблюдению областях пространства евклидова геометрия соблюдается с высокой степенью точности. Так что когда мы говорим о неизвестности, мы имеем в виду очень большие области пространства. Дело в том, что в геометрии Лобачевского отличие суммы углов треугольника от 180 градусов тем больше, чем длиннее стороны этого треугольника; поэтому чем больше треугольник, тем больше надежды заметить это отличие - и тем самым подтвердить на практике аксиому Лобачевского. Отсюда возникает мысль измерять треугольники с вершинами в звёздах (упомянутый выше Швейкарт употреблял для геометрии, впоследствии предложенной Лобачевским, название звёздная геометрия) . Такими измерениями занимался сам Лобачевский (“И он вгляделся пристальней в безоблачную высь…”), но точность измерительных приборов оказалась недостаточной, чтобы уловить отклонение суммы углов треугольника от суммы двух прямых углов, даже если таковое отклонение и существует.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Апология математики, или О математике как части духовной культуры»

Представляем Вашему вниманию похожие книги на «Апология математики, или О математике как части духовной культуры» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Годфри Харди. - Апология математика
Годфри Харди.
Годфри Гарольд Харди - Апология математика
Годфри Гарольд Харди
Отзывы о книге «Апология математики, или О математике как части духовной культуры»

Обсуждение, отзывы о книге «Апология математики, или О математике как части духовной культуры» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x