Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
V.

«Все изменилось в мгновение ока с выходом в свет книги Ландау…» И Харди, и Литлвуд наверняка прочитали ее, как только она вышла. Вот слова Харди из некролога Ландау, написанного им (совместно с Хансом Хайльбронном) для Лондонского математического общества:

Handbuch , вероятно, была самой важной из написанных им книг. В ней аналитическая теория чисел впервые представлена не как собрание нескольких прекрасных разрозненных теорем, а как систематическая наука. Появление этой книги изменило сам предмет, до того представлявший собой нетронутый уголок для нескольких безрассудных смельчаков, превратив его в плодороднейшее поле для исследований, каким он и оставался в течение прошедших с тех пор трех десятилетий. Почти по всем рассматриваемым там вопросам сейчас получено новое знание, в силу чего написанное в книге устарело, и в этом-то и состоит ее величайшая роль.

Без сомнения, именно из Handbuch и Харди, и Литлвуд заразились навязчивой идеей Гипотезы Римана. Первые плоды последовали в 1914 году, но не в виде совместной работы, хотя они и сотрудничали в то время, а в виде двух отдельных статей, каждая из которых сыграла значительную роль.

Статья Харди под названием Sur lez zéros de la fonction ζ(s) de Riemann [130]вышла в Comptes Rendus Парижской академии наук. В ней он доказал первый важный результат о распределении нетривиальных нулей.

Результат Харди 1914 года

Бесконечно много нетривиальных нулей дзета-функции удовлетворяют Гипотезе Римана (т.е. имеют вещественную часть одна вторая).

Хотя это и был значительный шаг вперед, для читателя важно понимать, что это не решило вопроса с Гипотезой. Имеется бесконечно много нетривиальных нулей; Харди доказал, что бесконечно много из них имеют вещественную часть одна вторая. Тем самым остаются открытыми три возможности.

• Бесконечно много нулей не имеют вещественную часть одна вторая.

• Лишь конечное число нулей не имеет вещественной части одна вторая.

• Нет нулей, вещественная часть которых не равна одной второй, — утверждение Гипотезы!

Чтобы провести аналогию, рассмотрим следующие утверждения о четных числах, превосходящих двойку, т.е. 4, 6, 8, 10, 12, …

• Бесконечно много этих чисел делится на 3; бесконечно много не делится.

• Бесконечно много из них больше чем 11; только четыре числа не больше.

• Бесконечно много из них представимы в виде суммы двух простых; нет таких, которые не представимы — гипотеза Гольдбаха (которая все еще не доказана на момент написания книги).

Статья Литлвуда, также опубликованная в Comptes Rendus Парижской академии наук в том же году, называлась Sur la distribution des nombres premiers . В ней доказан результат столь же тонкий и столь же замечательный, как результат Харди, хотя и относящийся к несколько другому направлению исследований в данной области. Обсуждение этого результата требует небольшой преамбулы.

VI.

Мы уже отмечали, что в начале XX века наблюдалось следующее общее направление мыслей по поводу Гипотезы Римана. Теорема о распределении простых чисел (ТРПЧ) была доказана. С математической точностью было установлено, что действительно π(x) ~ Li (x) — или, словами, что относительная разность между π(x) и Li (x) уменьшается до нуля по мере того, как x делается все больше и больше. Так что же тогда можно утверждать об этой разности — т.е. об остаточном члене ? Именно при внимательном рассмотрении остаточного члена математики обратили свои взоры к Гипотезе Римана, поскольку в работе Римана 1859 года для остаточного члена было приведено точное выражение. Как будет показано в должном месте, это выражение включает в себя все нетривиальные нули дзета-функции, так что ключ к пониманию остаточного члена каким-то образом скрыт среди этих нулей.

Чтобы говорить более конкретно, я приведу некоторые реальные значения остаточного члена. В таблице 14.1 «абсолютн.» означает разность Li (x) − π(x) , а «относит.» означает это же число, отнесенное к (т.е. деленное на) π(x) .

Таблица 14.1.

Мы видим, что относительная ошибка, без сомнения, уменьшается, стремясь к нулю, как ей и предписывает ТРПЧ. Это происходит потому что, хотя абсолютная ошибка тоже растет, она делает это далеко не так быстро, как π(x) .

Пытливый математический ум сейчас спросит: «А как именно ведут себя эти два числа?» Имеются ли правила, описывающие медленный рост абсолютной ошибки или стремление относительной ошибки к нулю? Другими словами, если выкинуть из таблицы 14.1вторую и четвертую колонки и рассмотреть получившуюся двухколоночную таблицу как «моментальный снимок» некоторой функции (колонки аргумент-значение), то что это будет за функция? Можно ли для нее получить формулу с волнами, как это было сделано для π(x) ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x