Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1/ 2 + 14,134725 i , 1/ 2+ 21,022040 i , 1/ 2+ 25,010856 i , ….

Рисунок 122Грамовские нули Каждый из выписанных нулей как видно имеет - фото 84

Рисунок 12.2.Грамовские нули.

Каждый из выписанных нулей, как видно, имеет вещественную часть, равную одной второй. [110](А кроме того, существование каждого из корней предполагает и существование сопряженного, расположенного под вещественной осью: 1/ 2 − 14,134725 i и т.д. Я буду считать этот факт само собой разумеющимся и не буду упоминать его специально до главы 21, когда он снова станет важным.) Поэтому в тех пределах, докуда они простираются, эти нули подтверждают справедливость Гипотезы Римана. Однако простираются они не слишком далеко. Известным фактом про число нулей — неявно содержавшимся в работе Римана 1859 года — было то, что число их бесконечно. Все ли они имеют вещественную часть, равную одной второй? Риман полагал, что дело так и обстоит — в этом-то и состояла его мощная Гипотеза. Но в тот момент никто не знал, как к этому подступиться.

После появления списка Грама математики, должно быть, взирали на него со священным ужасом. Тайна распределения простых чисел, которая удерживала на себе внимание математиков со времен легендарного Гаусса, оказалась каким-то образом заключенной в перечне чисел: 1/ 2 + 14,134725 i , 1/ 2+ 21,022040 i , 1/ 2+ 25,010856 i , …. Но как?! Их вещественные части, без сомнения, равняются одной второй, как и предполагал Риман; однако мнимые части не проявляют никакого очевидного порядка или системы.

Я только что сказал: «Математики, должно быть…» Мне надо было бы сказать: «Несколько математиков в континентальной Европе, должно быть…» Одержимость Гипотезой Римана, захватившая математиков в течение XX столетия, в 1905 году только набирала силу. Во многих частях света о ней толком и не знали. В следующей исторической части нашего повествования мы с читателем отправимся в Англию, в период эдвардианского расцвета ее имперской славы. Но сначала позвольте показать вам, как же на самом деле выглядит дзета-функция.

Глава 13. Муравей Арг и муравей Знач

I.

Предположим, что, как я и пытался вас убедить, комплексные числа представляют собой простое и понятное расширение обычных вещественных чисел и подчиняются всем обычным правилам арифметики с тем единственным добавлением, что i 2 = −1; кроме того, вспомним, что функции занимаются тем, что превращают числа из одной области — своей области определения — в числа из другой области; так вот, есть ли какая-нибудь причина, которая препятствует существованию функций от комплексных чисел? Никаких таких причин нет.

Функция возведения в квадрат, например, прекрасно работает для комплексных чисел в соответствии с правилами умножения. Скажем, квадрат числа −4 + 7 i есть (−4 + 7 i )×(−4 + 7 i ), что равно 16 − 28 i − 28 i + 49 i 2, т.е. −33 − 56 i . В таблице 13.1 показан «моментальный снимок» функции возведения в квадрат для некоторых случайным образом выбранных комплексных чисел. [111]

z z 2
−4 + 7 i −33 − 56 i
1 + i 2 i
i −1
0,174 − 1,083 i −1,143 − 0,377 i

Таблица 13.1.Функция возведения в квадрат.

Читателю, возможно, нелегко в это поверить, но изучение «функций комплексной переменной» представляет собой одно из наиболее элегантных и прекрасных направлений в высшей математике. Области определения всех функций, знакомых нам из школьной математики, легко расширяются на все, или почти все, комплексные числа. Например, в таблице 13.2 приведен «моментальный снимок» показательной функции для некоторых комплексных чисел.

z e z
−1 + 2,141593 i −0,198766 + 0,30956 i
3,141593 i −1
1 + 4,141593i −1,46869 − 2,28736 i
2 + 5,141593 i 3,07493 − 6,71885 i
3 + 6,141593 i 19,885 − 2,83447 i

Таблица 13.2.Показательная функция.

Заметим, что, как и ранее, когда мы увеличивали аргументы «по сложению» — а сейчас, разумеется, дело обстоит таким же образом, поскольку к аргументу каждый раз прибавляется 1 + i , — значения функции изменяются «по умножению», в данном случае за счет умножения на 1,46869 + 2.28736 i . Если бы мы взяли аргументы, отличающиеся друг от друга прибавлением каждый раз числа 1, то, конечно, получающиеся значения отличались бы умножением на e. Заметим еще, что в эту таблицу включено одно из самых прекрасных тождеств во всей математике:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x