Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Стоит заметить что такая форма записи предполагает выписывание всех - фото 30

Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел — в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).

Сделаем такое: умножим обе части равенства на Получим где мы пользовались 7м правилом действий со степенями которое - фото 31. Получим

где мы пользовались 7м правилом действий со степенями которое говорит - фото 32

где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2 s умножить на 7 s равно 14 s ). А теперь вычтем второе из этих выражений из первого. В одну из левых частей входит ζ(s) с множителем 1, а в другую — та же ζ(s) с множителем Вычитая получаем Вычитание устранило из бесконечной суммы все члены с - фото 33. Вычитая, получаем

Вычитание устранило из бесконечной суммы все члены с четными числами Остались - фото 34

Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.

Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на руководствуясь тем что 3 это первое выжившее число в правой части Теперь - фото 35, руководствуясь тем, что 3 — это первое выжившее число в правой части:

Простая одержимость Бернхард Риман и величайшая нерешенная проблема в математике - изображение 36

Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать Простая одержимость Бернхард Риман и величайшая нерешенная проблема в математике - изображение 37как неделимую штуку, — просто как некоторое число (каковым оно, конечно, и является при любом заданном s ). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого — с множителем Вычитая получаем Из бесконечной суммы исчезли все члены содержащие числа - фото 38. Вычитая, получаем

Из бесконечной суммы исчезли все члены содержащие числа кратные тройке - фото 39

Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число — это теперь 5.

Умножив теперь обе части полученной формулы на будем иметь А теперь вычитая это равенство из предыдущего и рассматривая на - фото 40, будем иметь

А теперь вычитая это равенство из предыдущего и рассматривая на этот раз как - фото 41

А теперь, вычитая это равенство из предыдущего и рассматривая на этот раз как неделимую конструкцию видим что в левую часть одного выражения она входит - фото 42как неделимую конструкцию, видим, что в левую часть одного выражения она входит с множителем 1, а в левую часть другого — с множителем Вычитание дает Все слагаемые с числами кратными 5 исчезли при вычитании и - фото 43. Вычитание дает

Все слагаемые с числами кратными 5 исчезли при вычитании и первое выжившее - фото 44

Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части — это 7.

Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные — числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.

Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим

Теперь заметим что если s любое число большее единицы то правая часть этой - фото 45

Теперь заметим, что если s — любое число, большее единицы, то правая часть этой формулы совсем ненамного больше чем просто 1. Например, при s = 3 правая часть этой формулы равна 1,00000006731036081534… Поэтому выглядит довольно правдоподобным предположение, что если продолжать указанный процесс до бесконечности, то для любого числа s большего 1 получится следующий результат (7.1):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x