Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наоборот, если мы занимаемся счетом, то между семью и восемью ничего нет; нам приходится совершать прыжок от одного числа к другому, причем между ними нет никаких камешков, по которым можно было бы скакать. Да, измеряя что-то, можно получить результат в семь с половиной дюймов, но нельзя насчитать семь с половиной объектов. (Ваше возражение могло бы быть таким: «А что, если у меня семь с половиной яблок? Разве это не высказывание о результате счета?» Я бы ответил: «Я могу разрешить вам выражаться таким образом, но только если вы уверены, что там ровно семь с половиной яблок, — в той же степени, в которой Ларри, Керли и Моу [51]— это ровно три человека. А что, если у вас 0,501 или 0,497 от целого яблока?» И если мы желаем разрешить этот вопрос, то мы немедленно попадаем в царство измерений. «Семь с половиной струнных квартетов» — это жульничество .)

Великое соединение арифметики и анализа — соединение счета и измерения, чисел staccato и чисел legato — возникло в результате исследования простых чисел, предпринятого Леженом Дирихле в 30-х годах XIX века. Дирихле (1805-1859), несмотря на свои имя и фамилию, был немцем из городка близ Кельна, где он и получил большую часть своего образования. [52]Тот факт, что он был немцем, уже сам по себе заслуживает небольшого отступления, ибо соединение идей из арифметики и анализа, выполненное Дирихле и Риманом, происходило на фоне широких социальных изменений в математике в целом — подъемом немцев.

VI.

Первая десятка величайших математиков, работавших в 1800 году, выглядела бы примерно так: Арган, Бойаи, Больцано, Гаусс, Жермен, Коши, Лагранж, Лаплас, Лежандр, Монж, Пуассон, Уоллес, Фурье. Другой автор, или даже тот же самый, но в другом настроении, мог бы, конечно, добавить или вычеркнуть одну-две фамилии, но это не повлияло бы на самое поразительное свойство данного списка: практически полное отсутствие в нем немцев. Единственный из них — Гаусс. Еще в списке один шотландец, один чех, один венгр и один «спорный» (Лагранж, нареченный при крещении Джузеппе Лагранджа, считается «своим» и в Италии, и во Франции). Все остальные — французы.

Работавших в 1900 году математиков было вообще намного больше, так что составление подобного списка на тот год с большей вероятностью привело бы к потасовке. Однако мне представляется, что следующие фамилии вызовут локально минимальное количество возражений: Адамар, Борель, Вольтерра, Гильберт, Дедекинд, Кантор, Каратеодори, Клейн, Лебег, Миттаг-Лефлер, Пуанкаре, Харди. Четыре француза, итальянец, англичанин, швед и пятеро немцев . [53]

Появление немцев на ведущих позициях в математике тесно связано с историческими событиями, которые мы вкратце рассмотрели в главах 1 и 2. При всех реформах Фридриха Великого поражение под Йеной в 1806 году показало пруссакам, что им предстоит еще пройти значительный путь по совершенствованию и модернизации своего государства. Подъем националистических чувств, питаемый, с одной стороны, долгими войнами с Наполеоном, а с другой — движением романтизма, стимулировал дополнительное ускорение реформ, несмотря на то что их тормозил (с точки зрения националистов) провал на Венском конгрессе идеи объединения всех говорящих по-немецки народов. В годы, последовавшие за Йеной, прусская армия подверглась реорганизации на основе всеобщей воинской повинности, было отменено крепостное право, были сняты ограничения на развитие промышленности, пересмотрены система налогов и вся финансовая система, а также проведены образовательные реформы Вильгельма фон Гумбольдта, уже упоминавшиеся в главе 2.iv. Более мелкие немецкие государства последовали примеру Пруссии, и довольно скоро Германия в целом превратилась в место, где привольно себя чувствовали наука, промышленность, прогресс, образование — и, разумеется, математика.

Стоит, наверное, заметить, что была и еще одна, меньшая по масштабу, причина подъема немецкой математики в XIX столетии — Гаусс. Он единственный немец в списке, который я составил на 1800 год; но как один доллар стоит десятка десятицентовиков, так и один Гаусс стоил десятка обычных математиков. Одного того факта, что Гаусс находился в своей обсерватории в Геттингене и преподавал там (хотя он и не любил преподавать и, как мог, избегал подобных занятий), было достаточно, чтобы Германия, да и Геттинген, были отмечены на мысленной карте каждого, кто интересуется математикой.

VII.

Таков был мир, в котором вырос Лежен Дирихле. Родившись в 1805 году, он принадлежал к поколению, предшествовавшему поколению Римана. Он был сыном почтмейстера из городка в 20 милях к юго-западу от Кельна, в рейнских провинциях Пруссии. Его поколение первым выиграло от реформированной фон Гумбольдтом системы среднего образования. Он, по-видимому, исключительно быстро учился, поскольку к 16 годам имел достаточную подготовку для поступления в университет. Уже «подсев» к этому времени на математику, он отправился в город, который по-прежнему оставался мировой столицей математического знания, — Париж, везя с собой книгу, которой дорожил больше всего, Disquisitiones Arithmeticae Гаусса. В Париже с 1822 по 1825 год Дирихле посещал лекции многих великих французских светил того времени, включая по крайней мере четверых из тех, кто входит в приведенный выше список: Лапласа, Лежандра, Пуассона и Фурье.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x