III.
А что мы можем выяснить, действуя «от готового»? Я на самом деле знаю ответы на последний вопрос для довольно внушительных чисел. Некоторые из них показаны в таблице 3.1.
N |
Сколько простых, меньших, чем N ? |
1 000 |
168 |
1 000 000 |
78 498 |
1 000 000 000 |
50 847 534 |
1 000 000 000 000 |
37 607 912 018 |
1 000 000 000 000 000 |
29 844 570 422 669 |
1 000 000 000 000 000 000 |
24 739 954 287 740 860 |
Таблица 3.1.
Здорово, конечно, но на самом деле не слишком информативно. Да, простые числа истончаются. Если бы они продолжали появляться в том же темпе, что и в первой тысяче, где их 168, то в последней графе их было бы что-то около 168 000 000 000 000 000. Но там в действительности лишь одна седьмая этого значения.
Сейчас я покажу фокус, который прольет немного света на эту туманную картину. Но сначала два слова о функциях.
IV.
Двухколоночная табличка вроде таблицы 3.1иллюстрирует понятие функции. «Функция» — одна из важнейших концепций во всей математике, вторая или третья по значимости, на мой взгляд, после «числа» и, возможно, «множества». Основная идея функции состоит в том, что некоторое число (из правой колонки) зависит от другого числа (из левой колонки) в соответствии с некоторым заданным законом или процедурой. Конкретно для таблицы 3.1процедура такова: «Посчитать, сколько имеется простых чисел в пределах, определяемых числом в левой колонке».
Другой способ сказать то же самое таков: функция — это способ превратить (математики говорят «отобразить») число в другое число. Функция в таблице 3.1согласно выбранной процедуре превращает, или отображает, число 1000 в число 168.
Профессиональные термины здесь таковы. Поскольку слишком утомительно постоянно произносить слова «число в левой колонке» и «число в правой колонке», математики говорят о них соответственно как об «аргументе» и «значении» (или «значении функции»). Итак, суть дела во всякой функции — это получить значение по заданному аргументу , следуя некоторому правилу или процедуре.
И еще один ключевой профессиональный термин. Бывает, что правило, на котором основано определение функции, можно применить к одним числам или к одному типу чисел, но не к другим или другому. Скажем, правило «вычесть из аргумента единицу и взять обратное число» определяет весьма уважаемую функцию — математик сказал бы, что это функция 1/(1 − x) , и мы довольно плотно с ней познакомимся в главе 9.iii, — но это правило нельзя применить к аргументу 1, поскольку такая попытка повлекла бы за собой деление на нуль, чего в математике не разрешается. (Нет никакого толка спрашивать: «А что если я попробую?» Нельзя, и все. Это против правил. Если вы попытаетесь, то игра остановится и все вернется в последнюю разрешенную позицию.)
В качестве другого примера рассмотрим функцию, действующую по правилу «посчитать, сколько делителей имеет аргумент». Мы видим, что число 28 имеет шесть делителей (будем сейчас включать и тривиальные делители тоже), а 29 — только два. Значит, данная функция превращает 28 в 6, а 29 (как и любое другое простое число) в 2. Это еще одна уважаемая и полезная функция, как правило, обозначаемая как d(N). Однако эта функция осмысленна только для целых чисел — и даже только для положительных целых чисел. Сколько делителей у числа 12 7/ 8? Сколько делителей у числа π ? Не спрашивайте. Эта функция — не для них.
Относящийся сюда профессиональный термин — это «область определения». Область определения какой-нибудь функции — это те числа, которые она допускает в качестве аргумента. Функция 1/(1 − x) допускает в качестве аргумента все числа, кроме 1. Функция d(N) допускает в качестве аргумента любое положительное целое число; это и есть ее область определения. Область определения функции √x — все неотрицательные числа, поскольку из отрицательных извлекать квадратный корень нельзя (впрочем, по этому поводу я оставляю за собой право передумать далее по тексту).
Некоторые функции допускают все числа в свою область определения. Функция возведения в квадрат x 2, например, применима к любому числу. Любое число можно возвести в квадрат (т.е. умножить само на себя). То же верно и для полиномиальных функций (другими словами, многочленов) — т.е. функций, значения которых получаются сложением и вычитанием степеней аргумента. Примером полиномиальной функции может служить 3 x 5+ 11 x 3 − 35 x 2 − 7 x + 4. Область определения полиномиальной функции — все числа. Это обстоятельство сыграет свою роль в главе 21.iii. Но наиболее интересные функции имеют определенные ограничения на свою область определения: или возникают какие-то значения аргумента, при которых правило не действует (обычно из-за того, что пришлось бы делить на нуль), или же правило вообще применимо только к определенному классу чисел.
Читать дальше