Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.

Здесь есть возможность читать онлайн «Джон Дербишир - Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: Астрель: CORPUS, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Автор:
  • Издательство:
    Астрель: CORPUS
  • Жанр:
  • Год:
    2010
  • Город:
    Москва
  • ISBN:
    978-5-271-25422-2
  • Рейтинг книги:
    4 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
III.

А что мы можем выяснить, действуя «от готового»? Я на самом деле знаю ответы на последний вопрос для довольно внушительных чисел. Некоторые из них показаны в таблице 3.1.

N Сколько простых, меньших, чем N ?
1 000 168
1 000 000 78 498
1 000 000 000 50 847 534
1 000 000 000 000 37 607 912 018
1 000 000 000 000 000 29 844 570 422 669
1 000 000 000 000 000 000 24 739 954 287 740 860

Таблица 3.1.

Здорово, конечно, но на самом деле не слишком информативно. Да, простые числа истончаются. Если бы они продолжали появляться в том же темпе, что и в первой тысяче, где их 168, то в последней графе их было бы что-то около 168 000 000 000 000 000. Но там в действительности лишь одна седьмая этого значения.

Сейчас я покажу фокус, который прольет немного света на эту туманную картину. Но сначала два слова о функциях.

IV.

Двухколоночная табличка вроде таблицы 3.1иллюстрирует понятие функции. «Функция» — одна из важнейших концепций во всей математике, вторая или третья по значимости, на мой взгляд, после «числа» и, возможно, «множества». Основная идея функции состоит в том, что некоторое число (из правой колонки) зависит от другого числа (из левой колонки) в соответствии с некоторым заданным законом или процедурой. Конкретно для таблицы 3.1процедура такова: «Посчитать, сколько имеется простых чисел в пределах, определяемых числом в левой колонке».

Другой способ сказать то же самое таков: функция — это способ превратить (математики говорят «отобразить») число в другое число. Функция в таблице 3.1согласно выбранной процедуре превращает, или отображает, число 1000 в число 168.

Профессиональные термины здесь таковы. Поскольку слишком утомительно постоянно произносить слова «число в левой колонке» и «число в правой колонке», математики говорят о них соответственно как об «аргументе» и «значении» (или «значении функции»). Итак, суть дела во всякой функции — это получить значение по заданному аргументу , следуя некоторому правилу или процедуре.

И еще один ключевой профессиональный термин. Бывает, что правило, на котором основано определение функции, можно применить к одним числам или к одному типу чисел, но не к другим или другому. Скажем, правило «вычесть из аргумента единицу и взять обратное число» определяет весьма уважаемую функцию — математик сказал бы, что это функция 1/(1 − x) , и мы довольно плотно с ней познакомимся в главе 9.iii, — но это правило нельзя применить к аргументу 1, поскольку такая попытка повлекла бы за собой деление на нуль, чего в математике не разрешается. (Нет никакого толка спрашивать: «А что если я попробую?» Нельзя, и все. Это против правил. Если вы попытаетесь, то игра остановится и все вернется в последнюю разрешенную позицию.)

В качестве другого примера рассмотрим функцию, действующую по правилу «посчитать, сколько делителей имеет аргумент». Мы видим, что число 28 имеет шесть делителей (будем сейчас включать и тривиальные делители тоже), а 29 — только два. Значит, данная функция превращает 28 в 6, а 29 (как и любое другое простое число) в 2. Это еще одна уважаемая и полезная функция, как правило, обозначаемая как d(N). Однако эта функция осмысленна только для целых чисел — и даже только для положительных целых чисел. Сколько делителей у числа 12 7/ 8? Сколько делителей у числа π ? Не спрашивайте. Эта функция — не для них.

Относящийся сюда профессиональный термин — это «область определения». Область определения какой-нибудь функции — это те числа, которые она допускает в качестве аргумента. Функция 1/(1 − x) допускает в качестве аргумента все числа, кроме 1. Функция d(N) допускает в качестве аргумента любое положительное целое число; это и есть ее область определения. Область определения функции √x — все неотрицательные числа, поскольку из отрицательных извлекать квадратный корень нельзя (впрочем, по этому поводу я оставляю за собой право передумать далее по тексту).

Некоторые функции допускают все числа в свою область определения. Функция возведения в квадрат x 2, например, применима к любому числу. Любое число можно возвести в квадрат (т.е. умножить само на себя). То же верно и для полиномиальных функций (другими словами, многочленов) — т.е. функций, значения которых получаются сложением и вычитанием степеней аргумента. Примером полиномиальной функции может служить 3 x 5+ 11 x 3 35 x 2 7 x + 4. Область определения полиномиальной функции — все числа. Это обстоятельство сыграет свою роль в главе 21.iii. Но наиболее интересные функции имеют определенные ограничения на свою область определения: или возникают какие-то значения аргумента, при которых правило не действует (обычно из-за того, что пришлось бы делить на нуль), или же правило вообще применимо только к определенному классу чисел.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Представляем Вашему вниманию похожие книги на «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.»

Обсуждение, отзывы о книге «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x