Рис. 50.
Рис. 51.
Рис. 52.
Рис. 53.
– А знаете, это интересный род головоломок! Дайте мне десяток подобных задач, я подумаю о них на досуге. – Извольте.
РЕШЕНИЯ ЗАДАЧ №№ 61–70.
Из представленных на стр. 210 и 211 фигур безусловно могут быть начерчены непрерывной линией фигуры 62-я, 64-я, 65-я, 67-я, 68-я, 69-я и 70-я. В этих фигурах у всех точек пересечения сходится четное число линий, – следовательно, можно начать чертить с любой точки. Каждая точка может служить начальной, она же будет и конечной. Выполнение чертежей показано на стр. 212 и 213.
Фигура 61-я заключает только две «нечетные» точки, именно те места, где ручка молотка входит в головку: у них сходится по 3 линии. Поэтому фигуру можно начертить непрерывной линией только в том случае, если начать в одной из «нечетных» точек и кончить в другой.
То же относится и к фигуре 63-й: она содержит только две «нечетных» точки, m и n: они и должны быть начальной и конечной точкой при черчении.
Фигура 66-я заключает более двух «нечетных» точек, – а потому ее совершенно невозможно начертить одной непрерывной линией.
Рис. 54. Задачи на непрерывное вычерчивание фигур: №№ 61–66.
Рис. 55. Задачи на непрерывное вычерчивание фигур: №№ 67–70.
Рис. 56. Решение задач: №№ 61–65.
Рис. 57. Решение задач: №№ 67–70.
Глава VIII Десять разных задач
ЗАДАЧА № 71
Горизонт
Часто приходится читать и слышать, что одно из убедительных доказательств шарообразности земли – круглый вид горизонта. Так как всюду линия горизонта – окружность, то земля наша должна быть шаром.
Подумайте, однако: какую фигуру имела бы линия горизонта, если бы земля наша была не шарообразная, а плоская, бесконечно простираясь во все стороны?
ЗАДАЧА № 72
Где и когда?
Вам, вероятно, знаком бессмысленный стишок
Рано утром, вечерком,
В полдень, на рассвете…
Неведомый слагатель этих стихов стремился выразить ими заведомую нелепость и подбирал слова, одно другому противоречие.
Между тем приведенная фраза не совсем бессмысленна; существуют места на земле, где такое определение времени вполне применимо и относится к некоторому реальному моменту.
Где же и когда это бывает?
ЗАДАЧА № 73
Рост Езопа [16]
«Уверяют, что Езопова голова была длиною 7 дюймов, а ноги так длинны, как голова и половина туловища; туловище ж равно длине ног с головою.
Спрашивается рост сего славного человека».
ЗАДАЧА № 74
Пять обрывков цепи
Кузнецу принесли пять цепей, по три звена в каждой – они изображены здесь на рисунке (черт. 58) – и поручили соединить их в одну цепь.
Рис. 58. Обрывки цепи.
Прежде чем приняться за дело, кузнец стал думать о том, сколько колец понадобится для этого раскрыть и вновь заковать. Он решил, что придется раскрыть и снова заковать четыре кольца.
Нельзя ли, однако, выполнить ту же работу, раскрыв меньше колец?
ЗАДАЧА № 75 Четырьмя пятерками
Нужно выразить число 16 с помощью 4 пятерок, соединяя их знаками действий.
Как это сделать?
ЗАДАЧА № 76 Вишня
Мякоть вишни окружает ее косточку слоем такой же толщины, как и сама косточка. Будем считать, что и вишня и косточка имеют форму шариков. Можете ли вы сообразить в уме, во сколько раз объем сочной части вишни больше объема косточки?
ЗАДАЧА № 77 Дыни
Продаются две дыни. Одна, окружностью 72 сантиметра, стоит 40 рублей. Другая, окружностью 60 сантиметров, стоит 25 рублей.
Какую дыню выгоднее купить?
ЗАДАЧА № 78 Удивительная затычка
В доске выпилены три отверстия: одно – квадратное, другое – круглое, третье – в форме креста. На нашем чертеже 59-м вы видите эти отверстия.
Рис. 59. Заткнуть эти отверстия одной и той же затычкой.
Нужно изготовить затычку такого фасона, чтобы она годилась для каждого из этих отверстий.
Вам кажется, что такой всеобщей затычки быть не может: отверстия чересчур разнообразны по форме.
Могу вас уверить, что подобная затычка существует. Попытайтесь найти ее.
ЗАДАЧА № 79 Модель башни Эйфеля
Башня Эйфеля в Париже, 300 метров высоты, сделана целиком из железа, которого пошло на нее 8000000 килограммов. У моего знакомого есть точная модель знаменитой башни, весящая всего только один килограмм.
Какой она высоты? Выше стакана или ниже?
ЗАДАЧА № 80 Муха на ленте
У меня была в руках длинная бумажная лента, с одной стороны красная, с другой – белая. Я склеил ее концы и получившееся бумажное кольцо положил на стол.
Внимание мое привлекла муха, севшая на красную сторону ленты и начавшая странствовать по ней. Я стал следить за ее путешествием вдоль ленты и, к изумлению, заметил, что, побродив немного по ленте, она очутилась на противоположной, белой стороне, хотя все время оставалась на ленте и нигде не переползала через ее край. Продолжая следить за ее движениями, я вскоре увидел ее снова на красной стороне ленты, хотя положительно мог утверждать, что она не переступала и не перелетала через края ленты и ползла все время, не покидая ее. Не объясните ли вы, как могло это случиться?
Читать дальше
Конец ознакомительного отрывка
Купить книгу