Теперь остается только каждый из пяти полученных 400-граммовых пакетов разделить пополам, на два равных по весу пакета. Делается это без гирь очень просто: рассыпают содержимое 400-граммового пакета в два картуза, поставленные на разных чашках, пока весы не уравновесятся.
Решение задачи № 30 Если бы заказанный венец был сделан целиком из чистого золота, он весил бы вне воды 10 кг, а под водой потерял бы 20-ю долю этого веса, т. е. полкилограмма. В действительности же венец, мы знаем, теряет в воде не 1/2 кг, а 10 – 9 1/4 = 3/4 кг. Это потому, что он содержит в себе серебро, металл, теряющий в воде не 20-ю, а 10-ю долю своего веса. Серебра должно быть в венце столько, чтобы венец терял в воде не 1/2 кг, а 3/4 кг – на 1/4 кг более. Если в нашем чисто золотом венце заменим мысленно 1 кг золота серебром, то венец будет терять в воде больше, нежели прежде, на 1/10 – 1/20 = 1/20 кг. Следовательно, чтобы получилось требуемое увеличение потери веса на 1/4 кг, необходимо заменить серебром столько килограммов золота, сколько раз 1/20 кг содержится в 1/4 кг; но 1/4 : 1/20 = 5. Итак, в венце было 5 кг серебра и 5 кг золота, – вместо выданных 2 кг серебра и 8 кг золота. Три килограмма золота было утаено и заменено серебром.
Глава IV Задачи с квадратами
ЗАДАЧА № 31
Пруд
Имеется квадратный пруд (рис. 26). По углам его, близ самой воды, растет 4 старых развесистых дуба. Пруд понадобилось расширить, сделать вдвое больше по площади, сохраняя квадратную форму. Но вековых дубов трогать не желают. Можно ли расширить пруд до требуемых размеров так, чтобы все 4 дуба, оставаясь на своих местах, не были затоплены водой, а стояли бы у берегов нового пруда?
Рис. 26. Задача о пруде.
ЗАДАЧА № 32 Паркетчик
Паркетчик, вырезая квадраты из дерева, проверял их так: он сравнивал длины их сторон, и если все четыре стороны были равны, то считал квадрат вырезанным правильно.
Надежна ли такая проверка?
ЗАДАЧА № 33 Другой паркетчик
Другой паркетчик проверял свою работу иначе. Он мерил не стороны, а диагонали (т. е. те косые линии, которые, перекрещиваясь, соединяют углы). Если обе диагонали оказывались равными, паркетчик считал квадрат вырезанным правильно.
Вы тоже так думаете?
ЗАДАЧА № 34 Третий паркетчик
Третий паркетчик при проверке квадратов убеждался в том, что все 4 части, на которые диагонали разделяют друг друга (черт. 27), равны между собой. По его мнению, это доказывало, что вырезанный четырехугольник есть квадрат.
А по-вашему?
Рис. 27.
ЗАДАЧА № 35 Белошвейка
Белошвейке нужно отрезать кусок полотна в форме квадрата. Отрезав, она проверяет свою работу тем, что перегибает четырехугольный кусок по диагонали и смотрит, совпадают ли края. Если совпадают, значит – решает она, – отрезанный кусок имеет в точности квадратную форму.
Так ли?
ЗАДАЧА № 36 Еще белошвейка
Другая белошвейка не довольствовалась проверкой своей подруги. Она перегибала отрезанный четырехугольник сначала по одной диагонали, затем, расправив полотно, перегибала по другой. И только если края фигуры совпадали в обоих случаях, она считала квадрат вырезанным правильно.
Что скажете вы о такой проверке?
ЗАДАЧА № 37 Затруднение столяра
У молодого столяра имеется пятиугольная доска, изображенная на рисунке 28-м. Вы видите, что она как бы составлена из квадрата и приложенного к нему треугольника, который вчетверо меньше этого квадрата. Столяру нужно – ничего не убавляя от доски и ничего к ней не прибавляя, – превратить ее в квадратную. Для этого необходимо, конечно, распилить ее раньше на части. Наш молодой столяр так и намерен сделать, но он желает разделить доску не более чем по двум прямым линиям.
Рис. 28. Затруднение столяра.
Возможно ли двумя прямыми линиями разрезать нашу фигуру на такие части, из которых составлялся бы квадрат? И если возможно, то как это сделать? ЗАДАЧА № 38 Все человечество внутри квадрата
В настоящее время (1924 г.) на всем земном шаре насчитывается 1800 миллионов человек:
1 800 000 000.
Представьте, что все люди, живущие на свете, собрались сплошной толпой на одном ровном месте. Вы желаете поместить их на квадратном участке, отводя по квадратному метру на каждые двадцать человек (плотно прижавшись друг к другу, 20 человек могут на таком квадрате поместиться).
Попробуйте, не вычисляя, оценить на глаз, каких приблизительно размеров квадрат понадобился бы для этого. Достаточно ли будет, например, отвести квадрат со стороною 100 километров?
ЗАДАЧА № 39 Сомнительные квадраты
Учитель черчения задал школьнику работу: начертить два равных квадрата и заштриховать их. Школьник выполнил работу так, как показано на рис. 29-м.
Читать дальше
Конец ознакомительного отрывка
Купить книгу