Яков Перельман - Живая математика. Математические рассказы и головоломки

Здесь есть возможность читать онлайн «Яков Перельман - Живая математика. Математические рассказы и головоломки» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2007, ISBN: 2007, Издательство: Мир энциклопедий Аванта +, Астрель, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Живая математика. Математические рассказы и головоломки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Живая математика. Математические рассказы и головоломки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Новую серию издательства "Мир энциклопедий Аванта+" открывает самая известная книга основоположника жанра "Занимательная наука" Якова Исидоровича Перельмана. В ней собраны увлекательные рассказы-задачи на математические темы, головоломки, а также авторские задачи замечательного ученого.

Живая математика. Математические рассказы и головоломки — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Живая математика. Математические рассказы и головоломки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 15 Нормальное расположение шашек положение I Рис 16 Неразрешимый - фото 28

Рис. 15

Нормальное расположение шашек (положение I)

Рис 16 Неразрешимый случай положение II В пределах этого шестиместного - фото 29

Рис. 16.

Неразрешимый случай (положение II)

В пределах этого шестиместного участка всегда можно привести на нормальные места шашки 10, 11, 12. Когда это достигнуто, то в последнем ряду шашки 14 и 15 окажутся размещенными либо в нормальном порядке, либо в обратном (рис. 16).Таким путем, который читатели легко могут проверить на деле, мы приходим к следующему результату.

Любое начальное положение может быть приведено к расположению либо рис. 15(положение I), либо рис. 16(положение II).

Если некоторое расположение, которое для краткости обозначим буквою S, может быть преобразовано в положение I, то, очевидно, возможно и обратное - перевести положение I в положение S. Ведь все ходы шашек обратимы: если, например, в схеме I мы можем шашку 12 поместить на свободное поле, то можно ход этот тотчас взять обратно противоположными движениями.

Итак, мы имеем две серии расположений таких, что положения одной серии могут быть переведены в нормальное I, а другой серии - в положение II. И, наоборот, из нормального расположения можно получить любое положение первой серии, а из расположения II - любое положение второй серии. Наконец, два любых расположения, принадлежащие к одной и той же серии, могут быть переводимы друг в друга.

Нельзя ли идти дальше и объединить эти два расположения - I и II? Можно строго доказать (не станем входить в подробности), что положения эти не превращаются одно в другое никаким числом ходов. Поэтому все огромное число размещений шашек распадается на две разобщенные серии: 1) на те, которые могут быть переведены в нормальное I: это - положения разрешимые; 2) на те, которые могут быть переведены в положение II и, следовательно, ни при каких обстоятельствах не переводятся в нормальное расположение: это - положения, за разрешение которых назначались огромные премии.

Рис 17 Шашки не приведены в порядок Как узнать принадлежит ли заданное - фото 30

Рис. 17. Шашки не приведены в порядок

Как узнать, принадлежит ли заданное расположение к первой или ко второй серии? Пример разъяснит это.

Рассмотрим расположение, представленное на рис. 17.Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в нормальном расположении принадлежит 8. Шашка 9 стоит, значит, ранее шашки 8: такое упреждение нормального порядка называют «беспорядком». О шашке 9 мы скажем: «Здесь имеет место 1 беспорядок». Рассматривая дальнейшие шашки, обнаруживаем упреждение для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения; здесь у нас 3 беспорядка (14 ранее 12; 14 ранее 13; 14 ранее 11). Всего мы насчитали уже 1 + 3=4 беспорядка. Далее, шашка 12 помещена ранее шашки 11, и точно так же шашка 13 - ранее шашки 11. Это дает еще 2 беспорядка. Итого, имеем 6 беспорядков. Подобным образом для каждого расположения устанавливают общее число беспорядков, освободив предварительно последнее место в правом нижнем углу. Если общее число беспорядков, как в рассмотренном случае, четное, то заданное расположение может быть приведено к нормальному конечному; другими словами, оно принадлежит к разрешимым. Если же число беспорядков нечетное, то расположение принадлежит ко второй серии, т. е. к неразрешимым (ноль беспорядков принимается за четное число их).

Благодаря ясности, внесенной в эту игру математикой, прежняя лихорадочная страсть в увлечении сейчас совершенно немыслима. Математика создала исчерпывающую теорию игры, теорию, не оставляющую ни одного сомнительного пункта. Исход игры зависит не от каких-либо случайностей, не от находчивости, как в других играх, а от чисто математических факторов, предопределяющих его с безусловной достоверностью».

Обратимся теперь к головоломкам в этой области. Вот несколько разрешимых задач, придуманных изобретателем игры.

22. Первая задача Лойда

Исходя из расположения, показанного на рис. 15, привести шашки в правильный порядок, но со свободным полем в левом верхнем углу (рис. 18).

Рис 18 К первой задаче Самуэля Лойда Рис 19 Ко второй задаче Самуэля Лойда - фото 31

Рис. 18. К первой задаче Самуэля Лойда

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Живая математика. Математические рассказы и головоломки»

Представляем Вашему вниманию похожие книги на «Живая математика. Математические рассказы и головоломки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Живая математика. Математические рассказы и головоломки»

Обсуждение, отзывы о книге «Живая математика. Математические рассказы и головоломки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x