Таким образом, чтобы подсчитать шансы «Янки» и «Смельчаков» на победу, мы просто-напросто учитываем возможную последовательность из 5 игр, которые еще предстоит сыграть. Во-первых, «Янки» стали бы победителями в том случае, если бы выиграли 4 из 5 возможных оставшихся игр. Это могло произойти в 1 из 5 случаев: BYYYY, YBYYY, YYBYY, YYYBY или YYYYB. И наоборот, «Янки» победили бы, если бы выиграли все 5 оставшихся игр, что могло произойти только в следующем случае: YYYYY. Теперь «Смельчаки»: они стали бы чемпионами, если бы «Янки» выиграли только 3 игры, что могло произойти в 10 случаях (BBYYY, BYBYY и так далее), либо при условии, что «Янки» выиграли бы только 2 игры (что опять же могло произойти в 10 случаях), либо при условии, что «Янки» выиграли бы только 1 игру (что могло произойти в 5 случаях), либо если они не выиграли бы ни одной игры (такое могло произойти только в 1 случае). Суммируя эти возможные исходы, получаем следующее: шансы «Янки» на победу были равны 6 из 32, или около 19%, а «Смельчаков» — 26 из 32, или около 81%. Если состязание в рамках Мировой серии вдруг остановили бы, то, согласно Паскалю и Ферма, именно таким образом следовало бы распределить призовое вознаграждение, и именно такими были бы шансы на победу при условии заключения пари после первых 2 игр. Кстати, «Янки» все же вернули себе преимущество — выиграли следующие 4 игры, — и стали чемпионами.
Точно такой же ход рассуждений вполне применим и в момент начала игр Мировой серии, то есть еще до того, как первая игра сыграна. Если две команды обладают равными шансами на победу в каждой из игр, они обладают равными шансами и на победу в Мировой серии. Однако такой же ход рассуждений верен и в том случае, если их шансы на победу не равны, за исключением того, что приведенные мной несложные расчеты несколько меняются: каждый исход должен быть подкреплен фактором, описывающим его относительную вероятность. Если вы произведете эти расчеты и проанализируете ситуацию в самом начале игр Мировой серии, увидите: при серии в 7 игр велик шанс того, что менее сильная команда в итоге оказывается чемпионом. К примеру, если команда достаточно сильна, чтобы гарантированно обыграть другую в 55% игр, более слабая команда тем не менее выиграет серию из 7 игр с вероятностью, равной примерно 4 из 10. Если же от более сильной команды ожидают победы над соперниками с вероятностью в 2 случаях из 3, соперники все же победят в серии из 7 игр с вероятностью около одного на каждые 5 игр. И спортивным лигам этого никак не изменить. К примеру, в случае вероятности 2/ 3придется сыграть как минимум 23 игры, чтобы определить победителя со статистически значимой долей уверенности, то есть команда послабее оказалась бы победителем в 5% или менее случаев (см. главу 5). В случае же соотношения 55 к 45 статистически значимой окажется серия из 269 игр. Вот уж точно утомительное занятие! Так что соревнования в спорте могут быть азартными и зрелищными, однако титул «всемирного чемпиона» не очень-то надежный показатель истинного положения дел.
Как я уже говорил, такой ход рассуждений применим не только к играм, будь они спортивными или азартными. К примеру, соперничают две компании или же два сотрудника одной компании, причем соперничество проходит почти на равных. Одержавший верх и потерпевший поражение могут выявляться раз в квартал или раз в год, однако чтобы получить точный ответ на вопрос, какая компания или какой сотрудник сильнее, путем простого сравнения — кто кого — нужно сравнивать десятилетиями, а то и столетиями. Например, если сотрудник А действительно сильнее и в скором времени продемонстрирует лучшие производственные показатели по сравнению с сотрудником В в 60 случаях из 100, в простых сравнениях из 5 исходов сотрудник послабее тем не менее одержит верх почти в одной трети случаев. Так что крайне ненадежно оценивать способности по краткосрочным результатам.
Во всех этих задачах подсчет достаточно прост и особых усилий не требует. Однако когда речь заходит о действительно больших числах, произвести подсчеты сложнее. К примеру, рассмотрим такую задачу. Вы занимаетесь приготовлениями к свадебному банкету на 100 человек, каждый из столиков рассчитан на 10 гостей. Вы не можете посадить двоюродного брата Рода с вашей подружкой Эми, потому что восемь лет назад они встречались, и Эми дала Роду отставку. С другой стороны, и Эми, и Летиция хотят сидеть рядом с другим вашим двоюродным братом, душкой Бобби, а вот тетю Рут надо от них отсадить, иначе потом все эти заигрывания еще лет пять будут предметом обсуждений на семейных сборищах. Итак, вы тщательно взвешиваете вероятности. Возьмем для начала первый столик. Сколькими способами можно из 100 гостей выбрать 10? Вопрос очень похож на следующие: сколько существует способов, чтобы разместить 10 инвестиционных пакетов между 100 инвестиционными фондами, или же распределить 10 атомов германия в 100 позициях кремниевого кристалла? Задача такого рода периодически всплывает в теории случайности, и не только в приложении к проблеме очков. Однако в случае с большими числами утомительно, а то и попросту невозможно подсчитывать вероятности, составляя из них список. Вот в чем истинное достижение Паскаля: общеприменимый и систематический подход к подсчету, позволяющий получить ответ путем расчетов по формуле или вывести его из табличных значений. Подход основан на любопытном расположении чисел — в форме треугольника.
Читать дальше
Конец ознакомительного отрывка
Купить книгу