Представьте себе женщину по имени Линда: ей тридцать один год, она не замужем, ей свойственна прямота и исключительный ум. В колледже она в качестве основного предмета изучала философию. В студенческие годы Линда активно выступала против дискриминации и социальной несправедливости, участвовала в демонстрациях против использования ядерной энергии. Все это Тверский и Канеман рассказали группе из восьмидесяти восьми человек и попросили их оценить следующие утверждения по шкале из восьми баллов: 1 балл — наиболее вероятное утверждение, 8 баллов — наименее вероятное. Вот результаты, от наиболее до наименее вероятных (табл. 1).
Утверждение |
Средний балл вероятности |
Линда принимает активное участие в феминистском движении |
2.1 |
Линда является социальным работником в области психиатрии |
3.1 |
Линда работает в книжном магазине и занимается йогой |
4.1 |
Линда работает в банке и принимает активное участие в феминистском движении |
4.1 |
Линда работает учителем в начальной школе |
5.2 |
Линда является членом Лиги женщин-избирателей |
5.4 |
Линда работает в банке |
6.2 |
Линда работает страховым агентом |
6.4 |
Таблица 1.
На первый взгляд может показаться, что ничего необычного в таких результатах нет: по описанию Линда скорее походила на активную феминистку, чем на банковского служащего или страхового агента. Однако обратим внимание на три возможности и их средние баллы, данные ниже в порядке от наиболее до наименее вероятного. 85% опрашиваемых оценили эти три возможности следующим образом (табл. 2).
Утверждение |
Средний балл вероятности |
Линда принимает активное участие в феминистском движении |
2.1 |
Линда работает в банке и принимает активное участие в феминистском движении |
4.1 |
Линда работает в банке |
6.2 |
Таблица 2.
Если вы не видите ничего необычного, значит, Канеману и Тверскому удалось провести вас, потому как если вероятность того, что Линда работает в банке и принимает активное участие в феминистском движении, больше, чем вероятность того, что Линда работает в банке, нарушается наш первый закон вероятностей, один из основных: «Вероятность того, что произойдут оба события, не может быть выше вероятности того, что каждое из событий произойдет по отдельности». Почему нет? Простая арифметика: вероятность того, что событие А произойдет = вероятности того, что события А и В произойдут + вероятность того, что событие А произойдет, а событие В не произойдет.
Для Канемана и Тверского результаты неожиданными не стали — они снабдили опрашиваемых большим количеством возможных вариантов, и связь между тремя сценариями, расположенными в случайном порядке, можно было и выпустить из виду. Канеман и Тверский дали описание Линды еще одной группе, но на этот раз утверждений было только три:
• Линда принимает активное участие в феминистском движении.
• Линда работает в банке и принимает активное участие в феминистском движении.
• Линда работает в банке.
К их удивлению, 87% опрошенных также выстроили утверждения следующим образом: вероятность того, что Линда работает в банке и принимает активное участие в феминистском движении, оказалась выше вероятности того, что Линда работает в банке. Исследователи решили пойти еще дальше: они прямо попросили группу из тридцати шести совсем неглупых выпускников подумать над ответами, при этом держа в уме наш первый закон вероятностей. Но даже после подсказки двое выпускников продолжали настаивать на нелогичных суждениях.
Канеман и Тверский заметили одну любопытную деталь, связанную с этим упрямым заблуждением: люди не совершат той же ошибки, если задать им вопросы о Линде, не связанные с тем, что они о ней знают. К примеру, предположим следующее — Канеман и Тверский спросили о том, какое из ниже приведенных утверждений наиболее вероятно:
• Линда владеет магазином, продающим блинчики по франшизе.
• Линда перенесла операцию по изменению пола, теперь ее зовут Ларри.
• Линда перенесла операцию по изменению пола, теперь ее зовут Ларри, и она владеет магазином, продающим блинчики по франшизе.
В данном случае несколько опрашиваемых выбрали бы в качестве наиболее вероятного утверждения последнее.
Канеман и Тверский сделали вывод: утверждение «Линда принимает активное участие в феминистском движении» не противоречит описанному характеру Линды, а добавление такой подробности, как работа в банке, только увеличивает правдоподобность утверждения. Но между хипповой юностью Линды и ее четвертым десятком жизни в этом бренном мире могло случиться много чего. Она могла стать религиозной фундаменталисткой, выйти замуж за скинхеда и сделать татуировку свастики на левой ягодице, могла заняться чем-то другим и забыть о своем активном участии в политической жизни. В каждом из этих утверждений, да и во многих других Линда, возможно, не будет принимать активное участие в феминистском движении. Поэтому добавление этой детали снижает вероятность утверждения, пусть даже на первый взгляд кажется ровным счетом наоборот.
Читать дальше
Конец ознакомительного отрывка
Купить книгу