Как же общая теория относительности описывает природу пространства? Она показывает, как материя и энергия Вселенной влияют на расстояния между ее точками. Пространство, рассматриваемое как множество, есть попросту собрание некоторых элементов — точек. Структура пространства, которую мы называем геометрией, возникает из соотношений между точками, и эти соотношения именуются расстояниями. Привнесенная структура соотносится с исходной так же, как, скажем, телефонная книга со списком домов и карта, определяющая их пространственные связи. Занимаясь картографированием Германии, Гаусс обнаружил, что, определив расстояние между парой точек, можно установить геометрию пространства, а Риман привнес в это наблюдение детали, необходимые Эйнштейну для формулировки его физики в геометрических терминах.
В сухом остатке все сводится к спору двух наших старых друзей — Пифагора и Непифагора. Вспомним, что в евклидовом мире можно померить расстояние между любыми двумя точками, применив теорему Пифагора. Мы попросту накладываем прямоугольную координатную сетку. Назовем координатные оси «восток — запад» и «север — юг». Согласно теореме Пифагора, квадрат расстояния между двумя точками равен сумме квадратов разницы между их положениями относительно оси восток — запад и север — юг.
Как установила Неевклида, в искривленном пространстве это соотношение недействительно. Пифагорову формулу необходимо заменить новой — непифагоровой. В непифагоровой формуле для вычисления расстояний значения разницы вдоль оси север — юг и вдоль оси восток — запад не обязательно считаются одинаково. Более того, возможно, появится и еще одно значение — продукт разнесенности север/юг и восток — запад. Математически говоря, получается: (расстояние)2 = g 11 х(разнесенность восток — запад)2 + + g 22 х(разнесенность север — юг) + g 12 x(разнесенность восток — запад) х(разнесенность север — юг) [255]. Числа, обозначенные через g, называются метрикой пространства (а сами факторы g называются компонентами метрики). Поскольку метрика определяет расстояние между двумя точками, она, геометрически говоря, полностью характеризует пространство. Для евклидовой плоскости и прямоугольных координат компоненты метрики попросту g 11 = g 22 = 1, а g 12 = 0. В этом случае формула Непифагора превращается в обычную пифагорову. В других типах пространства компоненты не так просты, и их значения могут варьировать в зависимости от вашего местоположения. В общей теории относительности эти представления обобщены для трех пространственных измерений и, как и в специальной теории, включают время как четвертое измерение (в четырехмерном пространстве метрика имеет десять независимых компонентов) [256].
Работа Эйнштейна 1915 года предъявляла уравнение, описывающее распределение материи в пространстве (и времени) в связи с метрикой четырехмерного пространства-времени. Поскольку метрика определяет геометрию, уравнения Эйнштейна определяют форму пространства-времени. В теории Эйнштейна масса не производит гравитационного воздействия, а меняет пространство-время.
Хотя пространство и время взаимосвязаны, однако, если ограничиться определенными обстоятельствами, как то: малыми скоростями и слабой гравитацией, — пространство и время можно рассматривать более-менее порознь. В таком случае допустимо говорить об одном лишь пространстве и о его кривизне. Согласно теории Эйнштейна, искривление области пространства (усредненное во всех направлениях) определяется массой в этой области.
Как мы уже убедились, искривление отражено в отношении площади круга к его радиусу или объему сферы с таким радиусом. Уравнения Эйнштейна утверждают, что при заданной сферической области пространства с равномерно распределенной в ней материей, измеряемый радиус этой сферы будет меньше ожидаемого (с учетом ее объема) пропорционально значению массы внутри нее. Постоянная в этой пропорции чрезвычайно мала: на каждый грамм массы радиус уменьшается всего на 2,5 х10–29 сантиметра, т. е. 0,000000000000000000000000000025 см. Для нашей планеты, с допущением равномерности ее плотности, разница в радиусах — 1,5 миллиметра. Для Солнца — полкилометра [257].
Проявления кривизны пространства-времени на Земле минимальны и лишь недавно получили практическое применение (системы спутниковой навигации, к примеру, чтобы сохранялась синхронизация, требуют релятивистских поправок настройки) [258]. Эйнштейн на протяжении многих лет и не предполагал, что изгибание света под действием сил тяготения вообще можно как-то измерить. Но вот наконец решил взглянуть в небо. Эксперимент принципиально прост: дождитесь следующего солнечного затмения и в том месте и в то время, где и когда затмение наблюдается, измерьте положение какой-нибудь звезды, что проявится рядом с Солнцем в процессе затмения (из-за этого затмение и нужно: если Солнце ничто не загораживает, звезду никак не увидать); далее найдите данные о положении этой звезды, скажем, полугодичной давности, когда свет ее достигал ваших глаз, не касаясь нашей родной звезды. Во время затмения проверьте, возникает ли эта звезда там, где «должна», — или слегка «в стороне».
Читать дальше
Конец ознакомительного отрывка
Купить книгу