Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Здесь есть возможность читать онлайн «Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Livebook, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Евклидово окно. История геометрии от параллельных прямых до гиперпространства: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы привыкли воспринимать как должное два важнейших природных умений человека — воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга — восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Перевод: Шаши Мартынова

Евклидово окно. История геометрии от параллельных прямых до гиперпространства — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Евклидово окно. История геометрии от параллельных прямых до гиперпространства», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вроде бы малое изменение простой аксиомы — постулата параллельности, однако его хватило, чтобы породить волну, прокатившуюся по всему корпусу евклидовых теорем и поменявшую каждую, что описывала форму пространства. Словно Гаусс вынул стекло из евклидова окна и заменил его на искажающую линзу.

Ни Гауссу, ни Лобачевскому, ни Бойяи не удалось выработать простой способ наглядно иллюстрировать этот новый вид пространства. Это получилось у Эудженио Бельтрами и — попроще — у Анри Пуанкаре, математика, физика, философа и двоюродного брата будущего президента Франции Раймона. И тогда, и ныне Анри — менее известный Пуанкаре, но, как и его кузен, умел ввернуть словцо. «Математиками рождаются, а не становятся», — писал Пуанкаре. Так родилось это клише, и Анри прочно закрепил за собой место в народном сознании. А вот труд Анри 1880 года куда менее известен вне академических кругов — в этой работе он определил четкую модель гиперболического пространства [171].

Создавая свою модель, Пуанкаре заменил базовые элементы типа прямой и плоскости вещественными объектами, после чего перевел аксиомы гиперболической геометрии в эти новые термины. Допустимо переводить неопределенные термины пространства как кривые или поверхности — или даже как разновидности еды, если при этом смысл, который им сообщается применимыми к ним постулатами, хорошенько определен и непротиворечив. Можно смоделировать неевклидову плоскость как поверхность зебры, считать волосяные луковицы на ее шкуре точками, а полосы — линиями, если нам так хочется, покуда такой перевод не противоречит аксиомам. Например, вспомним первый постулат Евклида применительно к пространству зебры:

1. От всякой волосяной луковицы до всякой волосяной луковицы можно провести кусок полосы.

Этот постулат в пространстве зебры недействителен: у полос зебры есть ширина, и полосы эти размещаются на животном в строго определенном направлении. Между двумя волосяными луковицами, расположенными вдоль какой-нибудь полосы, но смещенными от нее в стороны, не получится провести кусок полосы. Зебр в модели Пуанкаре не было. Зато она была похожа на блин.

Вот как устроена Вселенная Пуанкаре: вместо бесконечной плоскости — конечный диск, вроде блина, но бесконечно тонкий и с идеальной круговой кромкой. «Точки» — такие штуки, которые считались точками со времен Декарта: местоположения, вроде кристалликов мелкого белого сахара. Линии Пуанкаре — вроде изогнутых бурых следов от сковородки. Если же говорить технически, эти линии — «любые дуги окружностей [172], пересекающие границу диска под прямыми углами». Чтобы не путать их с линиями, которые нам подсказывает интуиция, станем называть их линиями Пуанкаре.

Собрав эту физическую картинку, Пуанкаре должен был придать смысл применимым к ней геометрическим понятиям. Одним из важнейших оказалась конгруэнтность — то самое докучливое свойство фигур, которое Евклид предписал нам проверять путем наложения. В своем четвертом «общем замечании» Евклид писал:

4. И совмещающиеся друг с другом равны между собой.

Как мы уже говорили, возможность перемещать фигуры в пространстве, не искажая их, нам гарантирована лишь при условии принятия евклидовой формы постулата параллельности. Поэтому применение общего замечания № 4 в рецепте конгруэнтности — ни-ни в неевклидовом пространстве. Решение Пуанкаре — интерпретировать конгруэнтность путем определения системы измерения длин и углов. Две фигуры в таком случае окажутся конгруэнтными, если длины их сторон и углы между ними совпадут. Вроде очевидно, да? Но все не так-то просто.

Определение способа измерения углов оказалось вполне лобовым. Пуанкаре определил угол между двумя линиями Пуанкаре как угол между их касательными в точке пересечения этих линий. А вот чтобы ввести определение длин — или расстояний, — Пуанкаре пришлось попотеть. С постижением этого понятия могут возникнуть трудности, поскольку Пуанкаре запихнул бесконечную плоскость в конечную область. Например, вспомним второй постулат:

2. Ограниченную прямую можно непрерывно продолжать по прямой.

Очевидно, применение обычного определения расстояний к блину делает постулат недействительным. Но Пуанкаре переопределил расстояние: новое пространство сжимается по мере приближения к его краям, и именно так конечная область превращается в бесконечную. На первый взгляд все просто, но Пуанкаре не мог просто взять и определить расстояние по своему произволу — чтобы стать приемлемым, его определение должно было удовлетворять многим требованиям. Например, расстояние между двумя точками должно быть всегда больше нуля. Кроме того, в точном математическом выражении, выбранном Пуанкаре, линия Пуанкаре должна была соединять любые две точки по кратчайшей траектории, возможной между ними (такие линии называются геодезическими ): в точности как обычные линии есть кратчайший путь между двумя точками в евклидовом пространстве.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Представляем Вашему вниманию похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Обсуждение, отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x