Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства

Здесь есть возможность читать онлайн «Леонард Млодинов - Евклидово окно. История геометрии от параллельных прямых до гиперпространства» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Livebook, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Евклидово окно. История геометрии от параллельных прямых до гиперпространства: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы привыкли воспринимать как должное два важнейших природных умений человека — воображение и абстрактное мышление, а зря: «Евклидово окно» рассказывает нам, как происходила эволюция нашей способности представлять то, чего мы не видим воочию.
Эта книга — восхитительная смесь научного авторитетного труда и веселого балагурства, она превращает классические теории и понятия геометрии в доступные, поражающие воображение истории.
Спасибо Млодинову: не нужно быть математиком или физиком, чтобы постичь загадки пространства и поразиться великолепию мироустройства.
Перевод: Шаши Мартынова

Евклидово окно. История геометрии от параллельных прямых до гиперпространства — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Евклидово окно. История геометрии от параллельных прямых до гиперпространства», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Большинству из нас в современном мире куда понятнее карты и планы улиц, нежели прямые, обозначенные загадочными символами аили X. Поэтому давайте-ка рассмотрим доказательство Прокла в более привычных обстоятельствах — скажем, на примере Пятой авеню в Нью-Йорке. Представим еще одну авеню, параллельную Пятой, и назовем ее Шестой. Не забываем, что под параллельностью, по Евклиду, мы подразумеваем их «непересекаемость», т. е. Пятая авеню не пересекает Шестую.

Высоко над кофейнями и лотками с хот-догами возносится почтенное здание, в котором размещается уважаемое издательство самых качественных на свете книг — «Фри Пресс» (по совпадению — первый издатель этой). Никоим образом не принижая заслуг «Фри Пресс», назначим его на роль «точки, не лежащей на данной прямой».

Затем, в точном соответствии с математической традицией, запомним, что нашими допущениями об этих улицах будут только факты, которые мы упомянули выше. Хотя в целях предметного иллюстрирования доказательства мы имеем в виду именно эти две авеню, как математики мы не можем включать в наше доказательство те свойства этих авеню, которые заранее не оговорили. Если вам известен другой издатель (неудачник — в отношении этой книги, по крайней мере) под названием «Рэндом Хаус», размещающийся дальше по улице, а также что Пятая и Шестая авеню отстоят друг от друга на некоторое расстояние, и что на некоем перекрестке там обитает слюнявый псих, выбросьте это все из головы. Математическое доказательство — упражнение в применении лишь исчерпывающе предложенных фактов, а в евклидовых «Началах» никакие особые свойства Нью-Йорка не значатся. Подобное неоправданное допущение вы, может, сделали бы, не задумываясь, и оно превратило бы все последующие доводы Прокла в ложные.

Итак, мы готовы сформулировать аксиому Плейфэра в предложенных нами терминах:

В плоскости Нью-Йорка через издательство «Фри Пресс», не размещающееся на Пятой Авеню, проходит одна и только одна авеню, параллельная Пятой, т. е. Шестая.

Это утверждение не в точности повторяет аксиому Плейфэра, поскольку мы, как и Прокл, допускаем, что существует хотя бы одна прямая — или улица (Шестая авеню) — параллельная данной (Пятой авеню). Это, вообще-то, еще требуется доказать, но Прокл интерпретировал одну из евклидовых теорем как гарантию этого факта. Примем это допущение и мы, и поглядим, можно ли, следуя логике Прокла, доказать аксиому в предложенной формулировке.

Чтобы доказать этот постулат, т. е. превратить его в теорему, необходимо продемонстрировать, что любая улица, проходящая через «Фри Пресс» и при этом не Шестая Авеню, непременно пересекает Пятую. Вроде бы это очевидно и следует из нашего повседневного опыта — именно поэтому такая улица и называется поперечной. Нам всего-то и надо, следовательно, доказать это без применения постулата параллельности. Начнем с того, что представим некую третью улицу, у которой лишь одно свойство: она прямая и проходит через «Фри Пресс». Назовем ее Бродвеем.

В своем доказательстве Прокл начал бы с того, что двинулся бы от «Фри Пресс» вдоль Бродвея к центру города. Вообразим улицу, идущую от того места Шестой авеню, где остановился Прокл, и перпендикулярную этой самой Шестой авеню. Назовем ее Николай-стрит, см. рисунок на следующей странице.

Николай-стрит, Бродвей и Шестая авеню образуют прямоугольный треугольник. По мере продвижения Прокла в центр города этот треугольник становится все больше.

Доказательство Прокла

Стороны этого треугольника, включая Николай-стрит, могут стать сколь угодно длинными. Отдельно отметим, что протяженность Николай-стрит постепенно сделается больше расстояния между Пятой и Шестой авеню. Следовательно, сказал бы Прокл, Бродвей пересечет Пятую авеню — что и требовалось доказать.

Доказательство это простое, но ложное. Для начала в нем есть малозаметное ошибочное использование концепции «все больше». Николай-стрит может, конечно, удлиняться дальше, но так и не стать длиннее одного квартала, как ряд чисел 1/2, 2/3, 3/4, 4/5, 5/6…, который все отрастает, но так и не переваливает за единицу. Этот недостаток можно исправить. Как и Птолемей, Прокл сделал необоснованное допущение. Он применил свойство параллельных дорог, которое интуитивно зримо, но никак им не доказано. Каково же это допущение?

Ошибка Прокла — в том, что он применил формулировку «Пятая и Шестая авеню отстоят друг от друга». Вспомните наше предупреждение: «…если вам известно… что Пятая и Шестая авеню отстоят друг от друга на некоторое расстояние… выбросьте это все из головы». И хотя Прокл не уточняет, на каком именно расстоянии находятся эти две улицы, он утверждает, что это расстояние постоянно. Таков наш жизненный опыт в отношении параллельных прямых — и Пятой и Шестой авеню, но его никак нельзя математически доказать, не ссылаясь на постулат параллельности, ибо это он и есть.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Представляем Вашему вниманию похожие книги на «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства»

Обсуждение, отзывы о книге «Евклидово окно. История геометрии от параллельных прямых до гиперпространства» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x