Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика

Здесь есть возможность читать онлайн «Роза Мария Рос - Мир математики. т.30. Музыка сфер. Астрономия и математика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики. т.30. Музыка сфер. Астрономия и математика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.30. Музыка сфер. Астрономия и математика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Астрономия — это целый мир, полный прекрасных образов. Эта удивительная наука помогает найти ответы на важнейшие вопросы нашего бытия: узнать об устройстве Вселенной и ее прошлом, о Солнечной системе, о том, каким образом вращается Земля, и о многом другом. Между астрономией и математикой существует особая связь, ведь астрономические прогнозы являются результатом строгих расчетов. По сути, многие задачи астрономии стало возможным решить благодаря развитию новых разделов математики.
Из этой книги читатель узнает о том, каким образом измеряется положение небесных тел и расстояние между ними, а также об астрономических явлениях, во время которых космические объекты занимают особое положение в пространстве.

Мир математики. т.30. Музыка сфер. Астрономия и математика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.30. Музыка сфер. Астрономия и математика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Подставив в эту систему уравнений соотношения T s 400 T L и R s 400 R L - фото 134

Подставив в эту систему уравнений соотношения T s = 400 T L и R s = 400 R L , исключим вспомогательную переменную х . Упростив выражения, получим:

Эта формула позволяет выразить все приведенные выше расстояния через радиус - фото 135

Эта формула позволяет выразить все приведенные выше расстояния через радиус Земли:

Сюда нужно подставить радиус нашей планеты чтобы определить все расстояния и - фото 136

Сюда нужно подставить радиус нашей планеты, чтобы определить все расстояния и радиусы небесных тел в системе «Земля — Луна — Солнце». Аристарху Самосскому не удалось вычислить радиус Земли, следовательно, он получил лишь ряд соотношений, но не расстояния и радиусы в явном виде. Сегодня радиус Земли до экватора известен: он равен 6645 км. Подставив это значение в приведенные выше выражения, получим следующие результаты: R L = 1850 км (реальное значение 1738 км), расстояние TL = 424000 км (реальное значение — 384000 км), R s = 740000 км (реальное значение — 696000 км), расстояние TS = 169600000 км (реальное значение — 149680000 км).

Мы привели эти результаты не для того, чтобы сравнить их с фактическими значениями, а для того чтобы показать, насколько умело действовал грек, получивший настолько точные значения примитивными методами.

Зная точный момент первого и последнего касания границы Луны и конусообразной - фото 137

Зная точный момент первого и последнего касания границы Луны и конусообразной тени, можно определить диаметр сечения конуса (слева). Зная время, за которое тень покроет поверхность Луны, можно измерить диаметр Луны (справа).

Глава 3. Как определить массу центральной звезды планетной системы

Рассмотрим движение экзопланет вокруг центральной звезды по круговой орбите радиуса а . Приравняем силы, действующие на планету:

Упростив получим значение скорости v Период Р обращения планеты вокруг - фото 138

Упростив, получим значение скорости v :

Период Р обращения планеты вокруг звезды по круговой орбите равен Подставив в - фото 139

Период Р обращения планеты вокруг звезды по круговой орбите равен:

Подставив в это выражение приведенное выше значение скорости v имеем Для - фото 140

Подставив в это выражение приведенное выше значение скорости v , имеем:

Для каждой экзопланеты можно выразить постоянную которая приводится в третьем - фото 141

Для каждой экзопланеты можно выразить постоянную, которая приводится в третьем законе Кеплера:

Записав указанное выше соотношение для Земли период обращения которой вокруг - фото 142

Записав указанное выше соотношение для Земли, период обращения которой вокруг Солнца равен Р = 1 год, а радиус орбиты, которую мы будем считать окружностью, равен а = 1 а. е., получим следующее уравнение:

Разделив друг на друга два последних равенства и приняв массу Солнца M s 1 - фото 143

Разделив друг на друга два последних равенства и приняв массу Солнца M s = 1, получим:

Мы знаем что а радиус орбиты в а е Р период обращения в годах - фото 144

Мы знаем, что а — радиус орбиты (в а. е.), Р — период обращения (в годах), таким образом, мы можем определить массу центральной звезды М E (точнее, отношение ее массы и массы Солнца). Масса центральной звезды в планетной системе М E (относительно массы Солнца) рассчитывается по формуле:

где а радиус орбиты экзопланеты в км Р период обращения вокруг звезды в - фото 145

где а — радиус орбиты экзопланеты (в км), Р — период обращения вокруг звезды (в днях). По этой формуле можно вычислить массу звезд Ипсилон Андромеды и Глизе 581 относительно массы Солнца. Полученные значения будут соответствовать приведенным в таблице на странице 60.

Глава 4. Упрощенные расчеты расстояния от Земли до Солнца во время транзита Венеры в 1769 году

Отчасти пожертвовав точностью вычислений, мы попытались упростить математические выкладки и представить достаточно простой и доступный для неспециалистов метод, основанный на гипотезах Галлея и Делиля. Возьмем за основу две гипотезы: будем предполагать, что орбиты Венеры и Земли — это окружности, в центре которых находится Солнце; Венера, центр Солнца и точка, в которой находится наблюдатель на поверхности Земли, лежат в одной плоскости. Будем использовать данные, полученные во время прохождения Венеры по диску Солнца 3 июня 1769 года наблюдателями, расположенными в удаленных друг от друга точках одного и того же меридиана: в норвежском городе Вардё и в Папеэте (Таити) — это две наиболее удаленные друг от друга точки, для которых известны результаты наблюдений. Используем некоторые результаты наблюдений и рассчитаем расстояние от Земли до Солнца.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.30. Музыка сфер. Астрономия и математика»

Представляем Вашему вниманию похожие книги на «Мир математики. т.30. Музыка сфер. Астрономия и математика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.30. Музыка сфер. Астрономия и математика»

Обсуждение, отзывы о книге «Мир математики. т.30. Музыка сфер. Астрономия и математика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x