Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление

Здесь есть возможность читать онлайн «Карлос Мадрид - Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление
  • Автор:
  • Издательство:
    «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0727-4 (т.32)
  • Рейтинг книги:
    3 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата. Эта книга наверняка поможет читателю почувствовать очарование хаоса.

Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Начнем путь к истокам теории хаоса. Нам предстоит преодолеть три реки, которые впадают в море динамических систем: это механика Ньютона, аналитическая механика Лапласа и, наконец, общая теория, задуманная Пуанкаре, который по праву станет главным героем этой главы.

От Ньютона — к Лейбницу, от Лейбница — к Лапласу

В попытках понять траектории движения планет, которые наблюдал Кеплер в свой телескоп, Ньютон составил математические модели, следуя путем Галилея. Так, Ньютон сформулировал законы, связывавшие физические величины и скорости их изменения, то есть, к примеру, пространство, пройденное телом, и скорость тела или скорость тела и ускорение. Следовательно, физические законы, описывавшие динамические системы, выражались в виде дифференциальных уравнений, в которых дифференциалы служили мерами скорости изменения.

Дифференциальное уравнение — это уравнение, главной неизвестной которого является скорость изменения величины, то есть ее дифференциал или производная. И дифференциал, и производная функции описывают изменение ее значений, то есть показывают, как ведет себя функция: возрастает, убывает или остается неизменной. В наших примерах ускорение описывает изменение скорости движущегося тела, так как представляет собой отношение дифференциалов скорости и времени.

Иными словами, ускорение — это производная скорости по времени. Следовательно, ускорение характеризует изменение скорости с течением времени.

Простые решения дифференциальных уравнений, как и алгебраических, крайне редки. Аналитическая механика, появившаяся позднее, стала шагом вперед по сравнению с механикой Ньютона, поскольку была ближе к анализу, чем к геометрии.

В результате изучение физических явлений стало сводиться к поиску дифференциальных уравнений, описывающих эти явления. После того как Ньютон открыл знаменитое дифференциальное уравнение «сила равна произведению массы на ускорение», описывающее движение систем точек и твердых тел, швейцарский математик Леонард Эйлер(1707–1783) определил систему дифференциальных уравнений, описывающих движение непрерывных сред, например воды, воздуха и других потоков, в которых отсутствует вязкость. Впоследствии физик и математик Жозеф Луи Лагранж(1736–1813) изучил звуковые волны и сформулировал уравнения акустики, а Жан-Батист Жозеф Фурье(1768–1830) рассмотрел потоки распределения тепла и описал их с помощью уравнения. Математический анализ, по мнению Фурье, был так же обширен, как и сама природа.

В XVII–XIX веках физики последовательно расширяли математическую картину мира, предлагая все новые дифференциальные уравнения для изучения самых разных областей, к примеру уравнения Навье — Стокса, описывающие движение вязкой жидкости, или уравнения Максвелла, характеризующие электромагнитное поле. Всю природу — твердые тела, жидкости, звук, тепло, свет, электричество — стало возможно описать с помощью дифференциальных уравнений. Однако найти уравнения, характеризующие то или иное явление природы, и решить их — две принципиально разные задачи.

Существуют два типа дифференциальных уравнений: линейные и нелинейные.

Дифференциальное уравнение называется линейным, если сумма двух его решений также будет его решением. В линейном уравнении ни сама неизвестная функция, ни ее производная не возведены в степень, отличную от нуля или единицы. Линейные дифференциальные уравнения описывают события, в которых действие совокупности причин равно совокупному действию этих причин по отдельности. В нелинейных уравнениях, напротив, подобное соотношение между причинами и следствиями не наблюдается, и совокупность двух причин может привести к неожиданным последствиям. Как вы увидите позднее, нелинейности всегда сопутствует хаос.

* * *

НЬЮТОН И ПЕРВОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ

Самое знаменитое дифференциальное уравнение, несомненно, принадлежит Ньютону: сила равна произведению массы на ускорение. В виде символов это уравнение записывается так:

F= maгде а = dv/ dt— (ускорение есть отношение дифференциалов скорости и времени, то есть производная скорости по времени). Рассмотрим еще два простых примера:

( dy/ dx) + y= 0

Это линейное дифференциальное уравнение, однако

( dy/ dx) + y 2= 0

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Представляем Вашему вниманию похожие книги на «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Яна Дубинянская - Глобальное потепление
Яна Дубинянская
Отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление»

Обсуждение, отзывы о книге «Мир математики. т.32. Бабочка и ураган. Теория хаоса и глобальное потепление» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x