Эрнст Нагель - Teopeма Гёделя

Здесь есть возможность читать онлайн «Эрнст Нагель - Teopeма Гёделя» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2010, ISBN: 2010, Издательство: КРАСАНД, Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Teopeма Гёделя: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Teopeма Гёделя»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Нагель Эрнест, Ньюмен Джеймс Рой. Теорема Гёделя: Пер. с англ. Изд. 2-е, испр. — М.: КРАСАНД, 2010. — 120 с. (НАУКУ — ВСЕМ! Шедевры научно-популярной литературы.) Вниманию читателя предлагается книга известного американского логика Э. Нагеля и опытного популяризатора науки Дж. Р. Ньюмена, посвященная теореме Гёделя о неполноте. Эта теорема была изложена в небольшой статье К. Гёделя, которая впоследствии сыграла решающую роль в истории логики и математики. Авторы настоящей книги, не пытаясь дать общий очерк идей и методов математической логики, строят изложение вокруг центральных, с их точки зрения, проблем этой науки — проблем непротиворечивости и полноты. Доказательство того факта, что для достаточно богатых математических теорий требования эти несовместимы, и есть то поразительное открытие Гёделя, которому посвящена книга. Не требуя от читателя по существу никаких предварительных познаний, авторы с успехом объясняют ему сущность одной из самых замечательных и глубоких теорем математики и логики.
Для специалистов по математической логике, студентов и аспирантов, а также всех заинтересованных читателей.

Teopeма Гёделя — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Teopeма Гёделя», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Использование идеи кодирования, как мы уже отмечали, лежит в основе знаменитой работы Гёделя. Следуя схеме рассуждения, очень близкой к той, что проводится в парадоксе Ришара (но усовершенствуя ее при этом таким образом, что она становится неуязвимой по отношению к сформулированным выше критическим заключениям), Гёдель показывает, что метаматематические высказывания об арифметическом формализованном исчислении можно представить посредством некоторых арифметических формул внутри исчисления. Как мы покажем подробнее в следующем разделе, ему удалось найти такой метод арифметического кодирования метаматематических высказываний, что для некоторой формулы, выражающей истинное метаматематическое утверждение о формулах арифметики, ни она сама, ни ее отрицание не доказуемы в формальной арифметике. Поскольку одна из этих формул, выражающая истинное арифметическое высказывание, не выводима из арифметических аксиом, то аксиомы образуют неполную систему. Предложенный Гёделем метод кодирования позволил ему также построить арифметическую формулу, соответствующую метаматематическому высказыванию «арифметическое исчисление непротиворечиво», и показать, что эта формула недоказуема в (этом же!) арифметическом исчислении. Отсюда следует, что упомянутое метаматематическое высказывание не может быть установлено без привлечения некоторых дополнительных дедуктивных средств, не представимых (т. е. не кодируемых, не переводимых) в самом арифметическом исчислении, так что если это высказывание и можно доказать, то уж заведомо с привлечением средств, непротиворечивость которых не менее сомнительна, нежели сама по себе непротиворечивость арифметики. Все важнейшие выводы были получены Гёделем с использованием придуманной им чрезвычайно остроумной системы числового кодирования, или, как мы будем далее говорить, нумерации.

7

Теоремы Гёделя

7.1. Гёделевская нумерация

Гёдель прежде всего описал некоторое формализованное исчисление, средствами которого можно выразить все обычные арифметические понятия и установить известные арифметические соотношения.

Гёдель использовал несколько упрошенный вариант системы, описанной в Principia Mathematics. Но для его цели точно так же подходит любое исчисление, в котором можно построить систему натуральных чисел с определенными на ней арифметическими операциями.

Формулы этого исчисления строятся исходя из некоторого запаса элементарных символов, образующих алфавит системы. В этом исчислении, как обычно, выделено некоторое множество исходных формул (аксиом) и точно перечислены правила преобразования (правила вывода), посредством которых из аксиом выводятся теоремы.

Гёдель показал, что каждому элементарному символу, каждой формуле (т. е. цепочке элементарных символов) и каждому доказательству (конечной последовательности формул) можно однозначным образом приписать некоторый номер (натуральное число). Такой номер, служащий своего рода значком, ярлыком, указывающим на отмечаемый им объект — символ, формулу или доказательство — формальной системы, мы будем называть «гёделевским номером» этого символа, формулы или доказательства [13] Имеется много различных способов приписывания гёделевских номеров, и какой из них выбрать — совершенно несущественно. .

Элементарные символы, составляющие алфавит системы, бывают двух сортов: константы и переменные. Мы будем считать, что у нас есть ровно десять символов-констант, которым мы припишем в качестве гёделевских номеров числа от 1 до 10. Почти все эти символы читателю уже известны: «~» (сокращение для «не»), «˅» («или»), «ﬤ» («если…, то…»), «=» («равно»), «0» (цифровой знак, изображающий число «нуль»), а также три «знака препинания»: левая скобка «(», правая скобка «)» и запятая « , ». Кроме того, нам понадобятся еще два символа: перевернутая буква «Ǝ» (читаемая как «существует» и называемая «квантором существования») и строчная латинская буква « s », обозначающая числовой оператор, сопоставляющий каждому натуральному числу непосредственно следующее за ним число. Пример: формулу «Ǝ x (x = s 0)» можно прочесть как «существует такое x, что x непосредственно следует за числом 0». Выпишем все используемые нами символы-константы (под ними указаны соответствующие гёделевские номера):

~ ˅ ﬤ Ǝ = 0 s ( ) ,

1 2 3 4 5 6 7 8 9 10

Кроме элементарных символов-констант, в алфавит нашего исчисления входят еще переменные, причем переменные трех сортов: числовые переменные «x», «y», «z» и т. д. (вместо них можно подставлять «цифры» и составленные из них (и числовых переменных) «арифметические выражения», выражающие натуральные числа); пропозициональные переменные «p», «q», « r » и т. д. (вместо них можно подставлять «формулы», выражающие высказывания); и, наконец, предикатные переменные «P», «Q», «R» и т. д. (вместо них можно подставлять арифметические «предикаты», выражающие такие свойства и отношения, как «больше чем», «простое (число)» и т. п.). Переменным также сопоставляются гёделевские номера, причем делается это в соответствии со следующими соглашениями:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Teopeма Гёделя»

Представляем Вашему вниманию похожие книги на «Teopeма Гёделя» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Teopeма Гёделя»

Обсуждение, отзывы о книге «Teopeма Гёделя» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x