Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография

Здесь есть возможность читать онлайн «Жуан Гомес - Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: ООО «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

  • Название:
    Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография
  • Автор:
  • Издательство:
    ООО «Де Агостини»
  • Жанр:
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-9774-0682-6; 978-5-9774-0639-0 (т. 2)
  • Рейтинг книги:
    5 / 5. Голосов: 1
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.
Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.
Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Гарднер призвал читателей попробовать расшифровать сообщение используя - фото 102

Гарднер призвал читателей попробовать расшифровать сообщение, используя предоставленную информацию, и даже дал подсказку: для решения необходимо разложить число Nна простые множители ри q. Более того, Гарднер назначил приз в размере $100 (приличная сумма на тот момент) тому, кто первым получит правильный ответ. Каждый, кто захочет побольше узнать о шифре, писал Гарднер, может обратиться к создателям шифра — Рону Ривесту, Ади Шамиру и Лену Адлеману из Лаборатории информации Массачусетского технологического института.

Правильный ответ был получен лишь через 17 лет. Он стал результатом сотрудничества более чем 600 человек. Ключами оказались р = 32769132993266 709549961988190834461413177642967992942539798288533 и q = 3490529510847650949147849619903898133417764638493387843990820577, а зашифрованная фраза звучала так: «Волшебные слова — это брезгливый ягнятник».

Алгоритм, представленный Гарднером, известен как RSA — буквенная аббревиатура от фамилий Rivest (Ривест), Shamir (Шамир) и Adleman (Адлеман). Это первое практическое применение придуманной Диффи системы шифрования с открытым ключом, которая повсеместно используется и по сей день. Надежность ее практически гарантирована, потому что процесс расшифровки является невероятно сложным, почти невозможным делом. Далее мы рассмотрим основы этой системы в упрощенной форме.

Подробнее об алгоритме RSA

Алгоритм RSA основан на некоторых свойствах простых чисел, о которых заинтересованный читатель может подробнее прочитать в Приложении. Мы ограничимся здесь изложением простых фактов, лежащих в основе алгоритма.

• Количество натуральных чисел, меньших nи взаимно простых с n, называется функцией Эйлера и обозначается как ф(n).

• Если n= p∙q, где ри q— простые числа, то ф(n)= 1)(q1).

• Из малой теоремы Ферма мы знаем, что если а— целое число, большее нуля, и р— простое число, то а р-1 1 (mod р).

• Согласно теореме Эйлера, если НОД ( n, а) = 1, то а ф(n) 1 (mod n).

Как уже упоминалось, система шифрования называется «с открытым ключом», потому что ключ шифрования доступен любому отправителю, желающему передавать сообщения. Каждый получатель имеет свой открытый ключ. Сообщения всегда передаются в виде цифр, будь то ASCII-коды или какая-либо другая система.

Сначала Джеймс вычисляет значение n путем умножения двух простых чисел ри q (n= pq)и выбирает значение е так, чтобы НОД ( ф(n), е) = 1. Напомним, что ф(n)= 1)(q1).Данные, которые являются открытыми, — это значение nи значение е(ни при каких обстоятельствах нельзя выдавать значения ри q ). Пара ( n, е) является открытым ключом системы, а значения ри qназываются RSА-числами. Затем Джеймс вычисляет единственное значение d по модулю ф(n), которое удовлетворяет условию dе= 1, то есть dявляется обратным элементом к числу епо модулю ф(n). Мы знаем, что обратный элемент существует, потому что НОД ( ф(n), е) = 1. Это число dявляется закрытым ключом системы. Со своей стороны, Питер использует открытый ключ ( n, е) для шифрования сообщения Мс помощью функции М= m e(mod n).Получив сообщение, Джеймс вычисляет M d= (m e) d(mod n),а это выражение эквивалентно M d= (m e) d= m (mod n),что свидетельствует о возможности расшифровать сообщение.

Теперь мы применим эту процедуру к конкретным числовым значениям.

Если р= 3 и q= 11, получим n= 33. Тогда ф(33) = (3–1)∙(11—1) = 20.

Джеймс выбирает е, не имеющее общего делителя с 20, например, е= 7. Открытый ключ Джеймса (33,7).

• Джеймс также вычислил закрытый ключ d, который является обратным элементом к числу 7 по модулю 20, а именно число d = 3, так как 7∙3 1 (mod 20).

• Питер, имея открытый ключ, хочет отправить нам сообщение «9». Чтобы зашифровать это сообщение, он использует открытый ключ Джеймса и вычисляет:

9 7 = 4 782969 15 (mod 33).

Зашифрованное сообщение имеет вид «15». Питер посылает его нам.

Джеймс получает сообщение «15» и расшифровывает его следующим образом:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»

Представляем Вашему вниманию похожие книги на «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография»

Обсуждение, отзывы о книге «Мир математики. т.2. Математики, шпионы и хакеры. Кодирование и криптография» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

андрей 14 апреля 2025 в 08:05
мне понравилась книга
x