Антонио Дуран - Истина в пределе. Анализ бесконечно малых

Здесь есть возможность читать онлайн «Антонио Дуран - Истина в пределе. Анализ бесконечно малых» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2014, ISBN: 2014, Издательство: Де Агостини, Жанр: Математика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Истина в пределе. Анализ бесконечно малых: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Истина в пределе. Анализ бесконечно малых»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Бесконечно малая величина — это числовая функция или последовательность, которая стремится к нулю. Исчисление бесконечно малых — общее понятие для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Анализ бесконечно малых — вне всяких сомнений, наиболее мощное и эффективное средство изучения природы, когда-либо созданное учеными. Становление этого понятия связано с именами блистательных математиков: Архимеда, Исаака Ньютона, Готфрида Вильгельма Лейбница, Огюстена Луи Коши и Карла Вейерштрасса. В этой книге идет речь об анализе бесконечно малых и его удивительной истории.

Истина в пределе. Анализ бесконечно малых — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Истина в пределе. Анализ бесконечно малых», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Некоторое время спустя идее Стевина последовали другие авторы, которые использовали современную нотацию с точкой (или запятой) для отделения десятичной части от целой. Среди них был шотландский барон Джон Непер (1550—1617), один из создателей логарифмов. Логарифмы появились в начале XVII века и были тесно связаны с открытием анализа бесконечно малых. Независимо от Непера логарифмы придумал и швейцарец Иост Бюрги (1552—1632). Изначально они использовались как вспомогательные функции в числовых расчетах, чтобы упростить умножение больших чисел в астрономических вычислениях. Нетрудно представить, сколько времени нужно было потратить на умножение множества подобных чисел и сколь велик был риск ошибиться. Джон Непер писал: «Ничто не причиняет столько проблем при занятиях математикой и не делает вычисления столь неприятными и затруднительными, как умножение, деление и извлечение квадратных и кубических корней из больших чисел. Операции эти помимо потери времени в большинстве случаев являются источником ошибок».

Чтобы упростить умножение больших чисел, в то время использовался метод под названием простаферезис. В его основе лежала тригонометрическая формула, с помощью которой произведение преобразовывалось в сумму. По сути, Джон Непер создал логарифмы с целью упростить этот метод: ему были нужны таблицы, с помощью которых можно было бы напрямую преобразовывать произведения в суммы.

Метод простаферезиса заключается в следующем. Допустим, мы хотим перемножить два больших числа n и m. Пусть они состоят из восьми цифр каждое — стандартная ситуация для астрономических расчетов тех времен. Для этого найдем в таблице значений косинусов два числа а и b такие, что n = cos a, m = cos b. Затем с помощью таблицы определим значения cos (a — b) и cos (a + b ), после чего применим следующую формулу:

Если бы мы выполняли умножение напрямую нам нужно было бы последовательно - фото 25

Если бы мы выполняли умножение напрямую, нам нужно было бы последовательно восемь раз умножить первое число на каждую цифру второго, после чего сложить восемь полученных чисел из восьми или девяти цифр каждое. С помощью вышеприведенной формулы и тригонометрических таблиц мы свели умножение к трем операциям сложения и простому делению на 2.

Метод простаферезиса был в некотором роде техническим инструментом: он позволял сэкономить время при расчетах, и его можно считать примитивным алгоритмом для вычислительной машины. Поэтому в течение определенного времени он держался в секрете и был доступен лишь немногим избранным. Непер, например, узнал об этом методе не самым обычным способом. Эта история больше напоминает сюжет приключенческого романа. Джон Крэйг, врач шотландского короля и друг Непера, в конце XVI века совершил путешествие в Данию, чтобы подобрать королю невесту. Корабль попал в шторм, и ему пришлось причалить к побережью вблизи лучшей обсерватории того времени, которую Тихо Браге построил на острове Вен между Данией и Швецией. Путешественников приютили в обсерватории, и, пока бушевал шторм, Крэйг познакомился с методом простаферезиса, а по возвращении в Шотландию обучил ему Джона Непера.

До XVII века было совершено крайне мало открытий, напрямую связанных с анализом бесконечно малых. Можно упомянуть о французском философе Николае Орезмском (ок. 1323—1382). Он дал примитивное определение понятия функции и ее графического представления: «Всё, что изменяется — реально ли измерить его или нет — можно вообразить как непрерывную величину, представленную отрезком». Он также внес вклад в изучение бесконечных рядов, впервые доказав, что сумма

1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ …

равна бесконечности.

ДОКАЗАТЕЛЬСТВО НИКОЛАЯ ОРЕЗМСКОГО

По словам самого Николая Орезмского, причина, по которой сумма гармонического ряда

1 + 1/ 2+ 1/ 3+ 1/ 4+ 1/ 5+ …

равна бесконечности, такова: «К величине, равной 1, прибавим 1/ 2, 1/ 3, 1/ 4и следующие дроби, сумма которых равна бесконечности. В самом деле из членов этого ряда можно составить бесконечное число групп, сумма которых будет больше 1/ 2.

Так, 1/ 3+ 1/ 4больше 1/ 2, так как каждое из двух слагаемых больше 1/ 4.

Аналогично,

1/ 5+ 1/ 6+ 1/ 7+ 1/ 8

больше 1/ 2, так как каждое из четырех слагаемых больше 1/ 8.

Аналогично

1/ 9+ 1/ 10+ … + 1/ 16

больше 1/ 2, так как каждое из восьми слагаемых больше 1/ 16, и так до бесконечности».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Истина в пределе. Анализ бесконечно малых»

Представляем Вашему вниманию похожие книги на «Истина в пределе. Анализ бесконечно малых» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Истина в пределе. Анализ бесконечно малых»

Обсуждение, отзывы о книге «Истина в пределе. Анализ бесконечно малых» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x