Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике

Здесь есть возможность читать онлайн «Луис Арталь - Том 19. Ипотека и уравнения. Математика в экономике» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 19. Ипотека и уравнения. Математика в экономике: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 19. Ипотека и уравнения. Математика в экономике»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга посвящена использованию математики в экономике и анализу роли точных наук в экономическом развитии.
Авторы рассказывают об основных математических инструментах, используемых в экономическом анализе. Их цель — помочь читателю научиться принимать верные решения в вопросах, касающихся инвестирования, размещения сбережений и кредитования.
Создатели книги затрагивают такие важные темы, как производство и рынок, спрос и предложение, международная торговля, ценообразование, рынок капитала и фондовые биржи. Безусловно, этот разговор немыслим без строгой красоты математики.

Том 19. Ипотека и уравнения. Математика в экономике — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 19. Ипотека и уравнения. Математика в экономике», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неравенству с одной переменной х— 7 > 13 удовлетворяют все числа, которые при уменьшении на 7 равняются 13 или более. Неравенства решаются по схожему алгоритму. Пример:

х— 7 >= 13; х— 7 + 7 >= 13 + 7; х>= 20.

Решением этого неравенства является множество всех чисел, больших или равных 20.

Иногда уравнения и неравенства ведут себя по-разному, как, например, в следующем случае.

Здесь для решения неравенства нужно сменить его знак на противоположный Это - фото 28

Здесь для решения неравенства нужно сменить его знак на противоположный.

Это можно показать так: 7 < 13, однако, напротив, — 7 > — 13.

* * *

Сумма первых восьми нечетных чисел записывается следующим образом:

Σ n j=0 (1 + 2j) = (1 + 2∙0) + (1 + 2∙1) + (1 + 2∙2) + (1 + 2∙3) + (1 + 2∙4) + (1 + 2∙5) + (1 + 2∙6) + (1 + 2∙7) + (1+ 2∙8) = 1 + 3 + 5 + 7 + 9 + 11+ 13 +15 + 17.

Сумма Σ 5 j=2 2 jравняется 2 2+ 2 3+ 2 4+ 2 5= 4 + 8 +16 + 32.

Сумма Σ 3 l=1 (l+1)∙3 l= 2∙З 1+ 3∙З 2+ 4∙3 3= 6 + 27 + 108.

* * *

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ ПЕРЕМЕННЫЕ

Во многих областях современной математики переменная определяется как дискретное множество (это означает, что она может принимать только определенные значения, и между двумя соседними значениями не может находиться никакого другого). На языке математики это записывается так: { х 1, х 2, …, х n}. Между значениями х 1и х 2нет никакого другого значения переменной х.

Существуют и другие переменные, используемые намного чаще, которые определены на непрерывных множествах (это означает, что такие переменные могут принимать целые, дробные и иррациональные значения). Примером такой переменной является {0 <= t <= }. Очень часто для решения различных задач, связанных с функциями, определенными на непрерывных множествах, требуется выполнить операцию интегрирования картинка 29, как, например, в случае с функцией вероятности или нормальным распределением вероятности. Когда речь идет о дискретных переменных, операцией, аналогичной интегрированию, является сложение.

Функция ftнепрерывной переменной t определенная на множестве a - фото 30

Функция f(t)непрерывной переменной t, определенная на множестве { a<= t<= b}.

Функция ухдискретной переменной х определенная на множестве х 1 х 2 х 3 - фото 31

Функция у(х)дискретной переменной х, определенная на множестве { х 1, х 2, х 3, x 4}.

Множество из четырех элементов можно обозначить буквами и цифрами, которые будут выступать в качестве индексов: х 1, х 2, х 3, x 4.Если мы хотим работать с множеством из nэлементов ( nможет изменяться в зависимости от задачи), они будут обозначаться { х 1, х 2…. х n-1, x n}. Так, х n - 1обозначает элемент, идущий перед х n, последним элементом множества. Произвольный элемент ряда (занимающий в нем i-е место) обозначается х i. Таким образом, например, цены четырех товаров можно обозначить p 1, р 2, р 3и р 4, а запрошенные объемы каждого товара — q 1, q 2, q 3и q 4.

* * *

Определенная сумма применяется при записи математических рядов, например биномиального ряда. Биномиальное распределение вероятности используется при анализе результатов опросов, когда на вопрос возможны лишь два ответа (например, «да» и «нет»). Вероятность их появления равняется ри q. А поскольку сумма их вероятностей равна р+ q= 1, следовательно, q = 1 — р.

Чтобы узнать вероятность того, что будет получено три или менее ответа «да», нужно вычислить вероятности следующих событий: ни одного ответа «да», один ответ «да», два ответа «да» или три ответа «да», то есть Р (0 < k < 3) = Р (0) + Р (1) + Р (2) + Р (3). Эту же формулу можно записать так:

Функция позволяющая вычислить вероятность того что на п вопросов будет дано - фото 32

Функция, позволяющая вычислить вероятность того, что на п вопросов будет дано от 0 до kответов «да», равна сумме вероятностей, последним слагаемым в которой будет Р(k). Эта же формула записывается в следующем виде:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 19. Ипотека и уравнения. Математика в экономике»

Представляем Вашему вниманию похожие книги на «Том 19. Ипотека и уравнения. Математика в экономике» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 19. Ипотека и уравнения. Математика в экономике»

Обсуждение, отзывы о книге «Том 19. Ипотека и уравнения. Математика в экономике» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x