Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Тогда е = g d= g pn + r= (g n) pg r= g r, так как g n= e. Таким образом, g r= e, и это означает, что r = 0 — в противном случае порядок g будет равняться не n, а r. Лемма доказана.

Так как x sr= е, то, по лемме 3, sr нацело делится на порядок (х) = Ik, то есть существует v такое, что sr = Ikv. Подставив в это выражение значение f, которое

133

мы только что вычислили, получим sr = trkv. Так как r — порядок элемента у t, это ненулевое целое число. Разделив на него обе части равенства, получим s = tkv.

Заключительная часть доказательства

В этом, последнем, разделе мы докажем, что группа G изоморфна прямому произведению циклических групп, порожденных х и x -vky, где v — целое число, определенное в предыдущем разделе. Имеем элементы порядка lk и t соответственно.

В первом случае доказательство не требуется. Во втором случае заметим, что

(x -vky) t= x -vkty t= x -vktx s= x s-vkt= e,

так как y t= x sи s = vkt. Если бы существовало другое целое число t' < t, для которого (х -vky) t'= е, то мы получили бы равенство у1 =x~vkt. Однако это выражение противоречит определению f как наименьшего целого числа, для которого у1 — степень х. Следовательно, x~vky имеет порядок f, а порядок прямого произведения <���х>

равен Ikt.

Рассмотрим функцию φ:×-vk>→G которая ставит в соответствие пару (х i, (x -vky) j) элементу x i-vky j. Проведя расчеты, очень схожие с теми, что были выполнены при доказательстве леммы 1, получим, что φ определено однозначно и является гомоморфизмом групп (предлагаем читателю провести необходимые расчеты самостоятельно). Так как группы G и <���х> х -vk> имеют один и тот же порядок, то чтобы показать, что φ — изоморфизм, достаточно доказать, что это отображение является инъективным, то есть доказать, что из x i-vky j= e следует х i= е и (x -vky) j= е. Последнее равенство эквивалентно равенству y j= x -vkj, таким образом, у jявляется степенью х. Проведя рассуждения, по сути, аналогичные тем, что мы выполнили при доказательстве леммы 3, увидим, что j должно быть кратно t.

Следовательно, существует j' такое, что j = tj'. Имеем:

e = х i-vkу i= х i-vktj'у tj'= х i-(vkt)j'x sj'= х i-sj'х sj'= х i,

так как у t= х sи s = ukt. Следовательно, как и требовалось, х i= е. Мы показали, что группа G изоморфна прямому произведению двух циклических групп. Если их порядки выражаются взаимно простыми числами, эта группа изоморфна циклической группе. Теорема доказана.

134

Библиография

ARBONES, J., MlLRUD, P., La armoma es numerica. Musica y matematicas, Barcelona, RBA, 2010.

AUBIN, D., «The Withering Immortality of Nicolas Bourbaki: a Cultural Connector at the Confluence of Mathematics, Structuralism and the Oulipo in France», Science in Context, 10 (2), 1997, 297-342.

BERTHOLET, D., Claude Levi-Strauss, Granada, Universidad de Granada, 2003.

BOREL, A. ET AL., Andre Weil (1906-1998), numero especial de la Gazette des Mathematiciens, 1999.

BROUE, M., «Les tonalites musicales vues par un mathematicien», en «Le temps des savoirs», Revue de l’Institut Universitaire de France, 4, eds. D. Rousseau & M.

Morvan, Paris, Odile Jacob, 2002, 37-78.

BOURBAKI, N., «Foudations of Mathematics for the Working Mathematician», Journal of Symbolic Logic 14, 1949, 1-8. N.

—: Theorie des ensembles, Paris, Hermann, 1954.

—: «L’architecture des mathematiques», en Les grands courants de la pensee mathematique, Paris, ed. F. Le Lionnais, Cahiers du Sud, 1948, 35-47.

CALVINO, I., «Rapidez» en Seis propuestas para el proximo milenio, Madrid, Siruela, 1990.

CARTIER, P., «Le defi post-hilbertin», prologo a Jeremy J. Gray, Le defi de Hilbert. Un siecle de mathematiques, Paris, Dunond, 2003.

—: «Matematicos sin fronteras», Gaceta de la RSME, aparecera.

—: «Notes sur l’histoire et la philosophie des mathematiques III. Le structuralisme en mathematiques: mythe ou realite?, Prepublications de flHES M/98/28.

CARTIER, P., ChEMLA, K., «Notes sur l’histoire et la philosophie des mathematiques II. La creation des noms mathematiques: l’exemple de Bourbaki», Prepublications de ITHES M/98/20.

DIOFANTO, La «Aritmetica» y el libro «Sobre los numeros poligonales», ed. M. Benito Munoz, E. Fernandez Moral y M. Sanchez Benito, Tres Cantos, Nivola, 2007, 2 vols.

ERIBON, D., Levi-Strauss, C., De cerca y de lejos, Madrid, Alianza, 1990.

FRESAN, J., «Le chateau de groupes. Entretien avec Pierre Cartier» en «Notes sur l’histoire et la philosophie des mathematiques V. Le probleme de l’espace», Prepublications de ITHES M/09/41. Un resumen en ingles se ha publicado en EMS Newsletter, diciembre 2009, 30-33.

135

—: «Lejos de las cigarras inclementes», Revista de Libros, n• 158, febrero 2010, 7-8.

—: «En casa de los Weil», Clarin: revista de nueva literatura, XVI, n• 93,15-20.

JAMES, J., The Music of the Spheres: Music, Science and the Natural Order of the Universe, Nueva York, Grove Press, 1993.

JOULIA, E., Levi-Strauss. Lhomme derriere Ioeuvre, Paris, JC Lattes, 2008.

LEVI-STRAUSS, C., Las estructuras elementales del parentesco, Barcelona, Paidos, 1998.

—: Mirar, escuchar, leer, Madrid, Siruela, 1994.

—: Tristes tropicos, Barcelona, Paidos, 2006.

MARCHAND, J.J., Entretien avec Claude Levi-Strauss, disponible con subtitulos en espanol en http://www.youtube.com/watch?v=_Vg4Jx3wzo4 y sucesivos.

SENECHAL, M., «The Continuing Silence of Bourbaki — An Interview With Pierre Cartier», The Mathematical Intelligencer 20 (1), 1998, 22-28.

TODOROV, T., «Jakobson y Bajtin», en La experiencia totalitaria, Barcelona, Galaxia Gutenberg, 2010.

WEIL, A., Memorias de aprendizaje, Tres Cantos, Nivola, 2002.

—: Number Theory. An Approach Through History from Hammurapi to Legendre, Boston, Birkhauser, 1994.

—: (Euvres scientifiques: collected papers, Berlin, Springer, 2009, 3 vols.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x