Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Условие 2: Разновидность брака для каждого человека зависит только от его пола и от разновидности брака его родителей.

ВЕЙЛЬ: Это означает, что существует две функции f и g, которые ставят в соответствие каждой разновидности брака М iправила f(М i) и g(M i), описывающие

67

браки сыновей и дочерей, рожденных в этом браке. Следовательно, изучение структур родства сводится к определению разновидностей брака М iи функций f и g. Вернемся к предыдущему примеру и предположим, что дети матерей из кланов A, B, С и D принадлежат кланам В, С, D и А соответственно. Посмотрим, как можно определить функции f и g. Разновидность брака М 1описывает брак между мужчиной А и женщиной В. Клан потомков определяется по матери, следовательно, дети от брака М 1будут принадлежать клану С. Так как мужчина из клана С вступает в брак по правилу М 3имеем f(M 1) = М 3a g(M 1) = M 2поскольку женщины из клана С подчиняются второму правилу. Повторив рассуждения для остальных разновидностей брака, получим следующую таблицу.

Обратите внимание что функции f и g описывают перестановку разновидностей - фото 35

Обратите внимание, что функции f и g описывают перестановку разновидностей брака так, что все возможные разновидности оказываются применимы для потомков обоих полов ровно один раз. В противном случае одна из разновидностей брака в следующем поколении исчезла бы, и было бы нарушено первое условие. Помните, что я рассказывал вам о симметрической группе S n, господин Леви-Стросс? Функции f и g — это перестановки элементов М 1, M 2, M 3и M 4. Сочетая их несколько раз, мы можем достичь любой, даже самой дальней ветви генеалогического древа!

Независимо от сложности правил, описывающих допустимые браки, мы всегда сможем описать их на языке алгебры — достаточно лишь запастись терпением.

ЛЕВИ-СТРОСС: Посмотрим, господин Вейль. Попробуйте доказать, что женщины принадлежат к тому же клану, что и их бабушки по отцовской линии.

ВЕЙЛЬ: Я думал, вы предложите мне задачу посложнее! Допустим, что бабушка и дедушка вступили в брак по правилу M i. Тогда их сыновья должны последовать правилу f(M i), а женщины, рожденные в этом брачном союзе, вступят в брак по правилу g(f(M i)). Следовательно, чтобы определить разновидность брака внучки, сначала нужно применить функцию f, затем — функцию g. Теперь ваш вопрос звучит так: совпадают ли g(f(M i)) и M i?

Иными словами, является ли композиция f и g тождественным преобразованием? Чтобы показать, что это не так, достаточно произвести несложные расчеты: поскольку f(M 1) равно М 3a g(M 3) равно M 4, получим, что g(f(M 1)) = M 4, а не М 1как мы хотели. Следовательно, если бабушка

68

принадлежит клану В, то внучка принадлежит к клану А. Однако бабушка по отцовской линии и ее внучка действительно будут принадлежать к одному клану. Убедитесь в этом!

ЛЕВИ-СТРОСС: Господин Вейль, я впечатлен! Именно такие методы требовались мне в 40-е годы при изучении запрета инцеста — проблемы, над которой до меня работал социолог Эмиль Дюркгейм. Он одним из первых указал, что запрет инцестов есть проявление более общего феномена, распространенного практически повсеместно — экзогамии. Как только мне что-то запрещают в кругу близких родственников, я вынужден покинуть клан, чтобы преодолеть запрет. Таким образом, речь идет не о моральных, а о практических соображениях. Многие опрошенные объясняли, что если женятся на своей сестре, то у них не будет зятя. «С кем я тогда буду ходить на охоту? С кем я буду отдыхать?» — говорили они. Моя точка зрения в некотором роде отличалась от той, которой придерживался Дюркгейм. Мне было интересно понять переход от природы, описываемой всеобщими законами, к культуре, где законы в разных обществах отличались. Вскоре я понял, что запрет инцеста представляет собой некое промежуточное состояние, потерянное звено цепи. Очевидно, что это правило применяется по-разному: в некоторых обществах, чрезвычайно строгих в этом отношении, смертью караются связи, которые мы бы никогда не назвали инцестом. В таком обществе я сам был бы рожден в запретном браке, так как мои родители были пятиюродными братом и сестрой. Другие общества, напротив, настолько либеральны, что в них мужчина может жениться на младшей сестре, хотя вступать в брак со старшей сестрой запрещается. Неизменно одно: всегда существует правило, запрещающее вступать в брак с кем угодно. Согласно моей гипотезе, запрет инцеста есть признак перехода от природы к культуре: в разных обществах это правило отличается, но в то же время оно весьма схоже со всеобщими законами природы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x