Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.

Здесь есть возможность читать онлайн «Хавьер Фресан - Мир математики - m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: «Де Агостини», Жанр: Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В 1881 году французский ученый Анри Пуанкаре писал: «Математика — всего лишь история групп». Сегодня мы можем с уверенностью утверждать, что это высказывание справедливо по отношению к разным областям знаний: например, теория групп описывает кристаллы кварца, атомы водорода, гармонию в музыке, системы защиты данных, обеспечивающие безопасность банковских транзакций, и многое другое. Группы повсеместно встречаются не только в математике, но и в природе. Из этой книги читатель узнает об истории сотрудничества (изложенной в форме диалога) двух известных ученых — математика Андре Вейля и антрополога Клода Леви-Стросса. Их исследования объединила теория групп.

Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Единственность нейтрального элемента.В любой группе существует только один элемент, для которого выполняется равенство а*е = е*а = а для любого а на множестве G.

ЛЕВИ-СТРОСС: Обратные элементы также будут единственными?

57

ВЕЙЛЬ: Конечно! Как и раньше, предположим, что существует два элемента b 1и b 2такие, что а*b 1= b 1*а = е и а*b 2= b 2*а = е. Получим, что а * b 1= а * b 2так как обе части равенства в свою очередь равны е. Это равенство по-прежнему будет корректным, если мы умножим обе его части на b 1Получим

b 1* а * b 1= b 1* а * b 2

Напомню, что в произведении трех элементов скобки можно расставить как угодно. Так,

b 1* а * b 1= (b 1* а) * b 1= е * b 1= b 1

поскольку b 1* а = е, где е — нейтральный элемент. Аналогично,

b 1* а * b 2= (b 1* а) * b 2=e*b 2= b 2

Так как оба выражения равны, имеем: b 1= b 2В силу этого свойства элемент b можно считать обратным а и записать b = а -1

Я очень рад, что вы задали этот вопрос, поскольку при ответе я упомянул одно утверждение, которое нам очень пригодится в будущем. Обратите внимание, что из равенства а * b 1= а * b 2мы вывели, что b 1= b 2Это свойство общее для всех групп: если результаты умножения двух элементов на третий элемент (в том же порядке) совпадают, то два исходных элемента равны.

Закон сокращения.Если в группе G выполняется одно из равенств

а * b = а * с или b * а = с * а, то b = с.

ЛЕВИ-СТРОСС: Но как это доказать?

ВЕЙЛЬ: Очень просто: достаточно повторить действия, которые мы уже выполнили. Допустим, дано равенство а * b = а * с. Согласно аксиоме теории групп под номером 3 для элемента а существует обратный элемент, который к тому же будет единственным. Обозначим его через a -1. Равенство по-прежнему будет верным, если мы припишем в каждую его часть слева a -1. Имеем:

a -1* а * b = a -1* а * с.

Теперь можно использовать свойство ассоциативности и сгруппировать элемент а и обратный ему. Так как a -1* а равно е, то, с одной стороны,

а -1* а * b = = (a -1* а) * b = е * b = b,

с другой стороны,

a -1*а*с = (a -1*а)*с = е*с = с,

поэтому обязательно будет выполняться соотношение b = с. Если исходное равенство будет записано не в виде a*b = a*c, а в виде b * а = с * а, достаточно будет провести аналогичные рассуждения, но приписать обратный элемент не слева, а справа.

58

ЛЕВИ-СТРОСС: А для чего нужно это свойство?

ВЕЙЛЬ: Оно, в частности, позволяет доказать, что таблица умножения конечной группы — это латинский квадрат. Напомню: латинский квадрат — это таблица чисел, в каждой строке и в каждом столбце которой записаны все элементы группы.

Обозначим их через а 1а 2... а n. Приведем доказательство для второго столбца таблицы; для любого другого столбца оно будет аналогичным. Какие элементы записаны во втором столбце? Те, что определяются умножением а 2на все элементы группы, то есть а 2* а 1, а 2* a 2, а 2* а 3... и так далее до а 2* а n. Допустим, что два выражения из этого списка равны, то есть существуют два индекса j и k такие, что а 2* а j= а 2* a k. Так как а 2приводится в обеих частях выражения, по закону сокращения имеем а j= a k. Таким образом, в этом столбце нет двух одинаковых элементов!

Но так как группа состоит из n элементов, а в столбце таблицы нужно записать n неповторяющихся элементов, то в этом столбце будут записаны все элементы группы! Понимаете?

ЛЕВИ-СТРОСС: Для строк это свойство доказывается аналогично — достаточно поменять множители местами.

ВЕЙЛЬ: Вы определенно делаете успехи, господин Леви-Стросс. Мне кажется, вы готовы ко встрече с новыми группами. Помните, совсем недавно я говорил, что групповая операция на множестве из трех элементов определяется единственным образом? Теперь я объясню, почему это так, но прежде чем изучить случай с тремя элементами, рассмотрим группы порядка 1 и 2. Я уже объяснял, что такое порядок группы? По-моему, нет. Для конечных групп порядком называется число элементов группы.

ЛЕВИ-СТРОСС: Но мы уже дали порядку другое определение, не так ли?

ВЕЙЛЬ: И да, и нет. В примере с преобразованиями треугольника я говорил, что R имеет порядок, равный трем, так как три поворота фигуры на 120°, выполненные последовательно, не изменяют ее. В общем случае порядок элемента равен n, если, выполнив операцию над этим элементом n раз (или возведя его в степень n), мы получим тождество. Вам может показаться, что это определение не имеет ничего общего с предыдущим, но сейчас я продемонстрирую, что это не так.

Рассмотрим произвольный элемент группы, например а. Мы можем составить группу степеней а, то есть <���а> = {а, а 2, а 3...}, где а 2— сокращенное обозначение а * а, а 3обозначает а * а * а и так далее. Допустим, что а имеет порядок n в соответствии с первым определением, то есть а n— нейтральный элемент группы. Тогда перечень степеней остановится на а n= е и затем начнется сначала, так как

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Представляем Вашему вниманию похожие книги на «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.»

Обсуждение, отзывы о книге «Мир математики: m. 35 Пока алгебра не разлучит нас. Теория групп и ее применение.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x