Михаил Гаспаров - Собрание сочинений в шести томах. Т. 1 - Греция

Здесь есть возможность читать онлайн «Михаил Гаспаров - Собрание сочинений в шести томах. Т. 1 - Греция» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2021, ISBN: 2021, Издательство: Литагент НЛО, Жанр: История, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Собрание сочинений в шести томах. Т. 1: Греция: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Собрание сочинений в шести томах. Т. 1: Греция»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Первое посмертное собрание сочинений М. Л. Гаспарова (в шести томах) ставит своей задачей максимально полно передать многогранность его научных интересов и представить основные направления его исследований. В первый том включены работы Гаспарова по антиковедению, главным образом посвященные Древней Греции. Наряду с аналитическими статьями, составляющими основное содержание тома и объединенными в тематические группы по жанровому и хронологическому принципу, в издание входят предисловия и сопроводительные статьи к переводам древнегреческих памятников. В них предельно сжато и ярко характеризуется как творчество отдельных поэтов (например, Пиндара), так и художественная специфика целого жанра (эпиграммы или басни). Эти статьи неотделимы от собственно переводов, фрагменты которых включены в каждый тематический раздел, поскольку в понимании Гаспарова перевод – едва ли не главная форма осмысления античного наследия. Главная в том числе и потому, что своей важнейшей задачей он считал приблизить к пониманию античности максимально широкую аудиторию. Потому этот том открывается «Занимательной Грецией» – одновременно и самым «ненаучным», и самым популярным трудом Гаспарова, посвященным древности. В нем как нельзя лучше прослеживается идея, объединяющая все столь разнообразные работы ученого: сделать античные тексты и античных авторов не просто понятными, но и говорящими языком естественным и близким читателю современной эпохи.

Собрание сочинений в шести томах. Т. 1: Греция — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Собрание сочинений в шести томах. Т. 1: Греция», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нарисуйте в вашей тетрадке число 3 в виде трех точек подряд, как на кости домино. И подумайте: а как теперь удобнее всего нарисовать число 9? Очевидно – пририсовать над ним еще одно такое троеточие, а потом еще одно. Получится квадрат из 9 точек со стороной 3. Теперь возьмем три таких квадрата и положим их друг на друга. Получится куб из 27 точек со стороной 3. Вот так видели свои числа древние греки: как выложенные из камешков. Так что, кроме «квадратных» чисел, у них были и «продолговатые», а кроме «кубических» – и другие «объемные». Например, число 6 было продолговатым – как бы прямоугольником, у которого длина 3, а ширина 2. А число 30 – объемным: параллелепипедом, у которого длина 3, ширина 2, а высота 5.

(Почему «2 в квадрате – 4» – теперь понятно; но почему «2 – квадратный корень из 4»? Слово «корень» ввели в математику уже не греки, а арабы. Они предпочитали представлять мир не геометрическим, как греки, а органическим; и в этом мире из числа 2, как растение из корня, вырастает число 4, а потом 8, а потом 16 и все остальные степени.)

При греческом зрительном воображении принято было перестраивать числа из фигуры в фигуру: например, представлять число 12 то как длинный узкий прямоугольник 6×2, то как короткий и широкий 3х4. Поэтому греки обращали большое внимание на набор делителей числа. Например, если число равнялось сумме собственных делителей, оно называлось «совершенным». Греки знали четыре таких числа – 6, 28, 496 и 8128. (Если хотите, убедитесь: 6=1+2+3 = 1×2×3.) А если из двух чисел каждое равнялось сумме делителей другого, эти числа назывались «дружащими»: например, 220 и 284. (Если хотите, проверьте: 1+2+4+71+142 и 1+2+4+5+10+20+11+22+44+55+110.) Когда Пифагора спросили, что такое друг, он ответил: «Второй я» – и добавил: «Это как 220 и 284».

Неудобства начинались при обращении с дробями: ведь точку не раздробишь на части. Поэтому греки предпочитали иметь дело не с дробями, а с отношениями: говорили не «одна седьмая часть единицы», а «одна единица от семи». Отношения и пропорции они сортировали с большой любовью. Мы говорим: «Число 20 кратно числу 5», то есть делится на него. А грек мог вдобавок сказать: «Число 20 кратночастно числу 16», то есть делится на разность между ними. Вы знаете: число 4 – это среднее арифметическое чисел 2 и 6, то есть сумма их, деленная пополам. Некоторые, может быть, знают: число 4 – это среднее геометрическое чисел 2 и 8, то есть квадратный корень из их произведения. А грек вдобавок знал: число 4 – это «среднее гармоническое» чисел 3 и 6, то есть их удвоенное произведение, деленное на их сумму.

Когда вы начинали учить алгебру, то заучивали такие формулы, как:

(a + b) 2= a 2+ 2ab + b 2;

(a – b) 2= a 2 – 2ab + b 2;

a 2 – b 2= (a + b) (a – b).

Вы помните, как они выводились? Это было довольно громоздко. А грек со своей привычкой к наглядности доказывал их не вычислением, а чертежом: чертил отрезок А, отрезок В, строил на них квадраты и показывал: «Вот!» Посмотрите и убедитесь.

Такие геометрические доказательства выручали греков в их страхе перед - фото 15

Такие геометрические доказательства выручали греков в их страхе перед бесконечностью. Вы смогли бы, например, извлечь точный корень из числа 2? Нет, не смогли бы: получили бы бесконечную дробь. А греческий математик поступал просто: чертил отрезок длиной в данное число, строил вокруг квадрат, в котором он был бы диагональю, показывал на сторону этого квадрата и говорил: «Вот!»

В современной математике такие величины, никогда не вычисляемые до конца, называются иррациональными. Греки называли их «невыразимые». «Невыразимым» было отношение диагонали и стороны в квадрате – 1,41421…; «невыразимым» было и отношение длины окружности к диаметру в круге, знаменитое число «пи» – 3,14159… («пи» – это первая буква греческого слова «периферия», окружность). Это число изобразить было труднее, и греческие математики в своей борьбе с бесконечностью век за веком ломали голову над «квадратурой круга»: как по данному диаметру круга с помощью только циркуля и линейки построить квадрат, равновеликий этому кругу?

Можно задать вопрос: а почему, собственно, с помощью только циркуля и линейки? Не попробовать ли изобрести новый прибор, посложнее, который позволил бы решить эту задачу? Но грек нам гордо ответил бы: «Возиться с приборами – это дело раба, привычного к ручному труду, а свободному человеку приличествует полагаться лишь на силу ума».

Вот как, оказывается, рабовладельческий образ мысли проявляется даже в такой отвлеченной науке, как математика.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Собрание сочинений в шести томах. Т. 1: Греция»

Представляем Вашему вниманию похожие книги на «Собрание сочинений в шести томах. Т. 1: Греция» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Собрание сочинений в шести томах. Т. 1: Греция»

Обсуждение, отзывы о книге «Собрание сочинений в шести томах. Т. 1: Греция» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x