Чтобы понять, почему именно расплав будет лучше в этом случае перемешиваться, нужно иметь в виду, что процесс перемешивания стекломассы осуществляется тремя путями: во-первых, конвекционными потоками, которые всегда возникают в подогреваемой жидкости (более теплые, более легкие слои жидкости поднимаются, а более холодные, более тяжелые опускаются); во-вторых, диффузией, т. е. способностью жидкостей и газов проникать друг в друга при соприкосновении; в-третьих, поднимающимися в стекломассе в период осветления пузырьками.
Все эти три фактора — и конвекционные потоки, и диффузия, и поднимающиеся пузырьки — действуют гораздо активнее в более подвижных, менее вязких жидкостях, а потому и перемешивание стекломассы пойдет тем успешнее, чем выше будет ее температура.
Когда стекломасса будет выдержана при высоких температурах (1400-1500°) достаточный промежуток времени и главная масса пузырей и свилей будет удалена, можно считать, что период осветления успешно завершен. Наступает третий этап варки, называемый «студкой». Задача этого периода — осторожное охлаждение стекломассы до той температуры, при которой она примет необходимую для последующего процесса формования вязкость, или густоту. Мы сказали, что охлаждение должно быть осторожным, имея в виду неприятные неожиданности, встречающиеся иногда на этом этапе варки. Нередко при охлаждении хорошо сваренное стекло, бывшее совершенно беспузырным, вдруг пронизывается бесчисленным количеством мошки — до нескольких тысяч штук в одном кубическом сантиметре (рис. 3). Происхождение этого явления связано с очень сложным вопросом о газах, содержащихся в скрытом виде в стекле. Доказано, что совершенно чистое, беспузырное стекло может содержать в себе очень много газов, объем которых в несколько раз превышает объем самого стекла. Эти газы либо химически связаны с компонентами стекла, т. е. образуют сними какие-нибудь определенные соединения, либо просто растворены в стекле физически подобно тому, как газы растворяются в воде. Такое «зараженное» газами стекло представляет во время варки большую опасность: достаточно, чтобы одна миллионная часть незримо заключенных в стекле газов пожелала выделиться в виде мельчайших пузырьков, чтобы все стекло, безупречное по качеству, было приведено в полную негодность. А ведь для того чтобы выделилась одна миллионная часть растворенных в стекле газов, достаточно ничтожно маленькой причины, настолько маленькой, что ее не только предотвратить, но даже и обнаружить чрезвычайно трудно. Я помню, как много лет назад, когда в Советском Союзе впервые ставилось производство оптического стекла, мы мучились с этим мелким пузырьком, так называемой «вторичной мошкой», появляющейся в период студки стекла. Я помню, как мы искали, и не без основания, причины этого явления в ничтожных колебаниях атмосферного давления и поддерживали для этой цели постоянный контакт с метеорологическими станциями.
Рис. 3. Мелкие пузыри, или «мошка», в стекле
Итак, мы убедились не только в том, что варка стекла является самой ответственной операцией стеклоделия, определяющей важнейшие количественные и качественные показатели производства, но также и в том, что в этом процессе мы сталкиваемся с очень сложными физико-химическими явлениями силикатообразования, протекающими в чрезвычайно трудной для экспериментального исследования обстановке и совершенно недостаточно еще нами изученными.
Наши представления о варке стекла как наиболее ответственном и трудном процессе стеклоделия были бы не полны, если бы мы не остановились еще на одном вопросе.
Жидкая стекломасса, раскаленная до 1500° и содержащая 15-20% расплавленных щелочей, представляет собой исключительно агрессивное в химическом отношении вещество. Из какого же материала должен быть сделан предназначенный для варки стекла сосуд, стенки которого могли бы выдерживать долговременное соприкосновение с таким поистине чудовищным растворителем? Существует ли такой стойкий материал в природе или в числе творений рук человеческих?
По счастью, такой материал нашелся. Он долгое время оставался единственным. Люди пять тысяч лет пользуются им для варки стекла и, по существу, ничем лучшим его до сих нор не заменили.
Этот материал — глина.
Глина принадлежит к числу очень огнеупорных материалов. Ее чистые разновидности, свободные от загрязняющих примесей, плавятся при температуре, близкой к температуре плавления платины (около 1780°). Природная глина обладает двумя замечательными свойствами, обеспечивающими ей столь широкое распространение в различных отраслях промышленности, — пластичностью, т. е. способностью легко воспринимать и хорошо сохранять форму, и огнеупорностью, точнее — способностью твердеть, каменеть под действием огня. Первое качество обеспечило простоту и дешевизну методов формования изделий, второе — надежный способ навечно сохранить полученную форму путем обжига. На этих двух свойствах глины построена керамическая промышленность — одна из самых старых на земле и одна из самых важных по своему значению в жизни человека.
Читать дальше