Но если опустить величину λ, то возраст Вселенной окажется равным приблизительно миллиарду лет [41] Мы используем здесь такие численные значения, которые были получены спустя примерно десятилетие. Хотя различие и представляет исторический интерес, оно не меняет существа вопроса.
— это очень много в сравнении с жизнью человека или даже человечества, но недостаточно большой срок для имевшихся оценок возраста Земли. А Вселенная едва ли может быть моложе, чем Земля.
Если же сохранить величину λ — как это сделал, например, Леметр, — это позволило бы увеличить теоретический возраст Вселенной. К тому же осталась бы лазейка для хорошего соответствия вычисленных данных с произведенными астрономами оценками средней плотности Вселенной. Ссылаясь на результаты наблюдения, космологи отстаивали необходимость λ. Но Эйнштейн оставался непреклонным. На первом месте для него были красота и логическая простота. Он больше доверял своим уравнениям гравитационного поля, «незапятнанным» величиной λ, чем тем астрономическим данным, которым они противоречили. И в результате на Эйнштейна опять смотрели как на гения в отставке — и на этот раз это были космологи, с точки зрения которых неземное чувство красоты увело его далеко в сторону.
В 1945 г. Эйнштейн написал «Приложение» ко второму изданию книги «Сущность теории относительности». В нем он обобщил свои взгляды на космологию. Лет за десять до этого он вместе с де Ситтером пришел к выводу, что вопрос об ограниченности пространства должен решаться путем наблюдений. В «Приложении» к книге Эйнштейн оставил вопрос открытым: «Возраст Вселенной… наверняка должен превышать возраст земной коры, определяемый из данных о радиоактивных минералах. Поскольку определение возраста по этим минералам со всех точек зрения является достоверным, то предложенная здесь космологическая теория будет опровергнута, если обнаружится, что она противоречит полученным таким методом результатам. В этом случае я не вижу никакого разумного решения».
Три года спустя (отчасти в связи с вопросом о возрасте Вселенной) была предложена привлекательная теория, согласно которой Вселенная не имела ни начала, ни конца и находилась в устойчивом состоянии: материя постоянно создается и компенсирует таким образом истощение, вызванное постепенным расширением.
Как раз незадолго до того, как Эйнштейн написал в 1945 г. свое «Приложение», началось бурное развитие наблюдательной астрономии, и в течение примерно четверти века Вселенная постарела на миллиарды лет. Или, если сформулировать все это более прозаически, возраст ее стал исчисляться уже не миллиардом лет, а десятью миллиардами (и даже больше). Таким образом, проблема возраста Вселенной утратила остроту. Но космологи предпочитали, чтобы численное значение величины λ определялось исходя из наблюдений, а не по чьей- либо прихоти. Первое время из данных наблюдений вытекало, что значение отлично от нуля. Но к началу 70-х годов нашего века эти данные стали, скорее, свидетельствовать в пользу нулевого значения λ. Это означало в самом общем смысле слова, что следует отдать предпочтение именно тому простому осциллирующему типу вселенной, к которому склонялся Эйнштейн в 1931 г. Сейчас многие космологи следуют примеру Эйнштейна в отношении λ. Но есть и такие, которые смотрят на отказ от λ с презрительной насмешкой.
Был бы Эйнштейн жив, он бы взирал на все это спокойно и с удовольствием, непоколебимый в своем отрицании величины λ и уверенный в том, что придет еще его черед — когда-нибудь будет полностью реабилитировано его чувство красоты. Давайте же и мы наберемся терпения.
Еще в 1916 г., до своей смелой космологической работы, Эйнштейн начал размышлять над гравитационными волнами. Не удивительно, что из общей теории относительности — теории поля — можно было вывести существование таких волн. Но по самой природе теории относительности эти волны должны были бы представлять собой величины самого космоса — слабые пульсации кривизны пространства, распространяющиеся со скоростью света. Или, пользуясь терминологией четырехмерного пространства, они должны были быть застывшими складками пространства — времени, приобретающими для нас характер движения в связи с нашим движением во времени.
Каков бы ни был результат, стоит вспомнить Максвелла, чье предсказание о существовании электромагнитных волн было подтверждено лишь после его смерти. Волнам Максвелла суждено было сыграть совершенно непредвиденную роль в теории относительности. Ибо, хотя и с запозданием, они послужили толчком к появлению нового поколения наблюдателей неба — радиоастрономов, вооруженных не оптическими, а радиотелескопами. Именно в их наблюдениях стали активно проверяться положения общей теории относительности.
Читать дальше