Однако факты были явно против него. Ускорение, безусловно, является абсолютным — это всем хорошо известно. Чтобы убедиться в этом, нет нужды изучать «Начала» Ньютона. Мы не ощущаем движение в равномерно и мягко движущемся транспорте. Но при первом же толчке мы его почувствуем, и это подтвердит любой пассажир, которому доводилось ехать стоя.
Перед лицом подобных фактов Эйнштейн вряд ли мог говорить об относительном ускорении. Но он был не из тех, кого могло обескуражить что-либо, идущее вразрез с его научной интуицией. Кроме того, важную роль сыграла критика абсолютного пространства и абсолютного движения, предпринятая предшественниками Эйнштейна, в особенности Махом. Она укрепила уверенность Эйнштейна в правильности избранного им пути. Это был его собственный путь, никем до него не проторенный. Кстати, впоследствии тот же Мах весьма сурово отозвался о его специальной теории относительности.
Еще в 1907 г., когда Эйнштейн впервые ввел формулу Е = тс 2, он поставил тем самым под сомнение абсолютность ускорения. Эйнштейн вновь вернулся к этой проблеме в статье, написанной в Праге в 1911 г. Его рассуждения, особенно в том виде, который они приобрели в этой статье, относятся к наиболее замечательным в истории науки. Имеются в виду не только сделанные им выводы, но также и способ рассуждения. Образно выражаясь, Эйнштейн проник в лагерь противника и обнаружил там давным-давно зарытое в землю оружие, которое он — и только он один — мог обратить против понятий, которые это оружие было призвано защищать. Суть этих рассуждений такова.
Итак, ускорение абсолютно? Очень хорошо. Допустим, что это так, и посмотрим, что можно из этого извлечь. Представим себе летательный аппарат — своего рода маленькую лабораторию — в космосе, вдали от других гравитационных тел, так что люди на борту этого аппарата не ощущают веса. Теперь представим, что лаборатория получает равномерное ускорение в направлении, которое люди внутри нее обозначат «вверх», и пусть в результате этого ускорения скорость аппарата каждую секунду возрастает на 9,8 м/с.
Таким образом, лаборатория начинает двигаться ускоренно. Но относительно чего? Почему возникает подобный вопрос? Разве мы не договорились, что ускорение абсолютно?
Да, договорились. Но если постоянство скорости относительно, то что означают эти 9,8 метра в секунду? Ведь обнаружить это возрастание скорости внутри аппарата невозможно.
Не спешите делать выводы. Пусть измерить скорость действительно нельзя, но для ускорения или увеличения ее на 9,8 м/с 2каждую секунду это вполне осуществимо. Ведь ускорение, к примеру, дает людям внутри лаборатории ощущение веса.
Если за этими краткими ответами вам почудится некоторая неловкость, тем лучше. Это будет свидетельствовать лишь о том, сколь неестественно выборочное понимание относительности, при которой равномерное движение относительно, а ускорение — нет. И тем не менее собственный опыт подсказывает нам, что ускорение абсолютно. Кроме того, это же утверждал Ньютон, а на его авторитет вполне можно положиться. Да и сам Эйнштейн некоторым образом согласился с этим, ведь в его специальной теории относительности ускорение является абсолютным.
Итак, вернемся к нашей лаборатории, которая ускоренно движется «вверх» с абсолютным ускорением 9,8 м/с 2. Все предметы внутри лаборатории движутся равномерно по прямой: это утверждает первый закон Ньютона. Но по отношению к ускоренно движущейся лаборатории эти не получающие ускорения предметы, будут казаться движущимися ускоренно «вниз» с ускорением 9,8 м/с 2. Измерив, к примеру, это направленное «вниз» ускорение, мы можем определить, что наша лаборатория действительно имеет абсолютное направленное «вверх» ускорение, равное 9,8 м/с 2.
Однако постойте. Предметы произвольной массы, из чего бы они ни состояли, получают, если их бросить, одно и то же направленное «вниз» ускорение. Разве нам не приходилось слышать об этом раньше? Конечно же, приходилось — ведь это хорошо знакомая нам, чуть ли не апокрифическая история о Галилее, который бросал всевозможные предметы с «Падающей башни» в Пизе. Каждое отдельное тело, которое мы роняем или бросаем, падает под действием силы тяготения с одинаковым ускорением (если не учитывать, скажем, сопротивление воздуха). Таким образом, результаты, полученные в движущейся с ускорением маленькой космической лаборатории, повторяют результаты, полученные без всякого ускорения в маленькой лаборатории на Земле. Это действительно так — по крайней мере в том, что касается свободного падения тел. Однако мы можем пойти дальше. Элементарного знакомства с физикой, в частности с законами Ньютона, достаточно для того, чтобы показать, что результаты любых механических экспериментов на борту маленькой космической лаборатории, движущейся с ускорением, будут в точности повторены в столь же небольшой лаборатории, расположенной на обладающей гравитационным полем Земле.
Читать дальше