Ранние работы Эйнштейна были еще только прелюдией, своеобразной закладкой фундамента. Они создавались при далеко не самых благоприятных обстоятельствах. Научные библиотеки, которые были ему доступны, ни в малейшей степени не соответствовали его запросам. Работая над первыми статьями, Эйнштейну одновременно приходилось выполнять свои обязанности в Бюро патентов в соответствии со строгими требованиями, которые предъявлялись к служащим. После экзамена на государственного служащего его статус стажера был изменен, и в сентябре 1904 г. Эйнштейн стал постоянным сотрудником.
Именно в это время по настоянию Эйнштейна на службу в Бюро был принят итальянец Микельанджело Бессо, инженер по образованию. Это был очень способный и эрудированный человек, но еще более ценными его качествами были доброта и благородство. Идеи Эйнштейна в то время приближались к захватывающей дух кульминации, и они с Бессо часто обсуждали их как в Бюро, так и по дороге домой. Становясь на позиции критика, Бессо помогал Эйнштейну оттачивать выводы, причем делал это крайне энергично. В то время он был для Эйнштейна идеальным «точильным камнем». Эйнштейну, пребывавшему тогда вдали от ученого мира, поистине повезло, что рядом с ним в Берне оказался Бессо, так же как ранее — Габихт и Соловин.
В 1905 г. гений Эйнштейна проявился в полной мере. Это был фантастический год. В анналах физики его можно поставить в один ряд с 1665–1666 гг., когда из-за обрушившейся на Англию чумы был закрыт Кембриджский университет и молодой Ньютон вынужден был покинуть Кембридж и поселиться в своей родной деревне Вулсторп. В тайне от всех он разработал дифференциальное исчисление, достиг значительных успехов в разработке теории света и цвета и сделал первые шаги на пути, который спустя годы привел его к открытию закона всемирного тяготения.
Весной 1905 г. Эйнштейн, будучи в прекрасном расположении духа, написал Габихту письмо, где в шутку журил его за долгое молчание. После тирады, в которой он награждал Габихта самыми невероятными прозвищами, Эйнштейн продолжал: «Почему Вы до сих пор не прислали мне свою диссертацию? Разве Вам не известно, жалкая Вы личность, что я оказался бы одним из тех полутора чудаков, которые прочтут ее с интересом и удовольствием? Обещаю Вам взамен четыре работы… первая из них… является весьма революционной…»
Первая статья действительно была революционной. Но была ли это теория относительности? Нет. Ее время еще только приближалось. А в этой статье речь шла о той работе, которую Эйнштейн позднее назвал «Gelegenheitsarbeit» (работой, выполненной между прочим). Свой рассказ о ней мы начнем с совершенно, казалось бы, тривиальных вещей.
Если нагреть кусок железа, он станет теплым. Если продолжать нагревать его, он станет теплее, потом раскалится докрасна. По мере того как продолжается нагревание, свечение становится все ярче и меняет окраску — от оранжевого к желтому, а вскоре к ослепительному голубовато-белому цвету. Это звучит достаточно банально. Тем не менее здесь, оказывается, скрывается нечто глубоко загадочное.
Как мог бы ученый приступить к поиску математической формулы, описывающей свечение железа при различных температурах? Один путь — это провести эксперименты, измеряя и свечение, и его цвет, затем составить график результатов в надежде, что какие-то четкие математические зависимости сами бросятся в глаза. Но даже если бы это удалось, теоретики вряд ли были бы удовлетворены. Они бы стремились вывести математическую формулу исходя из того, что известно о поведении света, теплоты и материи.
А что именно известно? Смотря о каком времени идет речь. Во второй половине XIX в. было известно немало прекрасно взаимосвязанных между собой правил и понятий, по большей части удивительно удачных. Очень нелегко дались ученым эти знания. Об этом можно было бы так долго рассказывать, что мы остановимся лишь на немногих основных моментах.
Вот, например, свет. В XVII в. Ньютон создал теорию света и цвета, объясняющую все без исключения известные в то время экспериментальные данные в области оптики. Не вдаваясь в излишние подробности, можно сказать, что он считал свет потоком частиц, каждая из которых обладает определенной пульсацией, причем цвет определялся частотой пульсации. Современник Ньютона голландский физик Христиан Гюйгенс выдвинул совершенно иную теорию. Он полагал, что свет — это не поток частиц, а некоторая элементарная волна. Но так как теория Ньютона позволяла с единой точки зрения объяснить большее число явлений, то предпочтение было отдано ей.
Читать дальше