В 1980 г. полузабытая книга Р. Гольдшмидта была переиздана и стала одной из наиболее цитируемых. Публикация книги палеонтолога С. Стэнли [563] Stanley S. M. Macroevolution: Pattern and Process. San Francisco, 1979, 332 p.
породила сомнения в том, что один из постулатов синтетической теории эволюции — о сводимости макроэволюции к микроэволюционным процессам — справедлив [564] Воронцов Н. Н. Постепенное или внезапное видообразование: «или-или» или «И-И»? // Дарвинизм: история и современность. Л.: Наука, 1988, с. 87-103.
.
Многие современные авторы сходятся в том, что эволюция происходит не столько путем отбора постепенных изменений, сколько за счет фиксации внезапных, резких перестроек морфогенеза, которые могут дать так называемых «многообещающих монстров» Гольдшмидта. Существенные изменения морфологии могут происходить в результате мутаций регуляторных генов, под контролем которых идет морфогенез. Таким образом, идеи Гольдшмидта находят свое место в русле современного эволюционизма [565] Raff R. A., Kaufman Т. С. Embryos, Genes and Evolution. Developmental Genetic Basis of Evolutionary Changes. N. Y., Macmillan, 1983,395 p.
. Л. И. Корочкин [566] Korochkln LI. Hopeful monsters and jumping genes // Evolucion Biologica, 1993, vol. 7, p. 153-172.
предложил модель возможного эволюционного эффекта генетически подвижных (GM) ретровирусоподобных элементов, которые, по его мнению, могут вызывать появление «многообещающих монстров» — гольдшмидговских макромутаций.
В 1960-е годы было установлено, что удвоения отдельных участков ДНК, дупликации генов могут стать основой для формирования новых полипептидных цепей, принимающих на себя новые функции. Со временем дуплицированные гены внутри одного генома могут дивергировать, т. е. кодировать синтез несколько различных полипептидных цепей, чем объясняются различия в выполняемых ими функциях. Явления дупликации объясняют нам происхождение слегка отличающихся друг от друга по своему аминокислотному составу полипептидных цепей гемоглобина и других сложных белков. Вскоре было обнаружено, что дупликации могут захватить не только отдельные гены, но и большие участки хромосом. В настоящее время ясно, что близкие виды могут отличаться друг от друга по доле гетерохроматиновых неактивных участков хромосом. Все это вместе взятое позволило американскому генетику японского происхождения Сусумо Оно выступить со специальной книгой «Эволюция путем генных дупликаций» [567] 0/wo S. Evolution by Gene Duplication. Springer Verlag. Berlin-Heidelberg-New York, 1970; (Рус. пер.) С. Оно, Генетические механизмы прогрессивной эволюции. М.; Мир, 1973.
, в которой подробно рассматривается роль дупликационных макромутаций в макроэволюции. По сути дела, идеи Оно во многом созвучны с идеями Р. Гольдшмидта.
В настоящее время накапливается все больше фактов, свидетельствующих о важной роли дупликаций в макроэволюции; во многих случаях удается более или менее точно определить время возникновения отдельных дупликаций. Так, фермент карбоангидраза, участвующий в обратимой гидратации СО2, представлен у плацентарных и сумчатых млекопитающих двумя полипептидными цепями КА-1 и КА-2, тогда как у беспозвоночных, рыб и птиц он состоит из единственной цепи [568] Dobzhansky Th. е. a. Evolution. San Francisco, W. H. Freeman & Со, 1977.
. Эта дупликация могла произойти до ответвления родословного древа сумчатых и плацентарных млекопитающих, т. е. не позднее рубежа юры и мела или раннего мела («130 млн. лет назад), но не раньше отделения ствола рептилий, от которых произошли поздние птицы и млекопитающие, т. е. не ранее середины перми («260 млн. лет назад).
Мы знаем также, что ДНК в геноме эукариот представлена не только уникальными последовательностями нуклеотидов, но и в виде фракций с повторяемостью в сотни, тысячи и миллионы раз [569] Britten R. J., D. E. Kohne. Repeated sequences in DNA // Science, 1968, №161, p. 529—540; Britten R. J., E. H. Davidson. Gene regulation for higher cells: a theory ii Science, 1969, №165, p. 349—357; Britten R. J., E. H. Davidson. Repetitive and non-repetitive DNA sequences and a speculation on the origin of evolutionary novelty ii Quart. Rev. Biol., 1971, №46, p. 111 (1971); Developmental Biology Research Group, Ed..by R. J. Britten. Carnegie Institution of Washington Year Book. Vol. 74. 1974—1975; Developmental Biology Research Group. Ed. by R. J. Britten, E. H. Davidson. Carnegie institution of Washington Year Book. Vol. 76. 1975—1976; Г инатулин А. А. Структура, организация и эволюция генома позвоночных. М.: Наука, 1984, 294 с.
. Эта повторяющаяся (репетитная) ДНК может служить резервом для возникновения новых генов или замещения старых; будучи временно выключенной из активного функционирования, репетитная ДНК может претерпевать эволюцию своего нуклеотидного состава, причем эта эволюция может длительное время избегать контроля естественного отбора, поскольку высокорепетитная ДНК непосредственно не связана со структурными генами, т. е. с биосинтезом белка или с проявлением функциональной активности генов [570] О роли полимеризации и олигомеризации ДНК в макроэволюции позвоночных см.: Воронцов Н. Н. О методологии морфологии и уровнях морфологического анализа // Журн. общ. биол., 1989, т. 50, №6, с. 737-743; Он же. К методологии морфологии // Биол. журнал Армении, 1989, т. 42, №9-10, с. 809-818. О молекулярных путях перестройки генома см.: Dover G. A role for the genome in the origin of species? // Mechanism of Speciation. N. Y., 1982, p. 435-459; Carson H. L. Speciation as a major reorganization of polygenic balances // Ibid., p. 411-433.
.
Читать дальше
Конец ознакомительного отрывка
Купить книгу