В 20-е годы нашего столетия была получена следующая картина, объясняющая периодическое повторение химических свойств. В простейшем атоме, атоме водорода, ядро имеет положительный заряд, равный единице. Иными словами, ядро атома водорода — это одна положительно заряженная частица — протон. Вокруг него движется единственный электрон. В атоме гелия вокруг ядра (с двойным положительным зарядом) вращаются два электрона. Нарастание числа электронов продолжается до последнего встречающегося в природе и найденного в естественных условиях элемента — урана, где целый рой из 92 электронов вращается сложным образом вокруг ядра с зарядом 92 и далее. Заметим еще раз, что речь идет пока об атомах, где число электронов равно положительному заряду ядра. На всем протяжении менделеевской периодической системы — от водорода до самых тяжелых элементов — мы встречаем последовательное нарастание заряда ядра и соответственно возрастание числа электронов. Эти электроны движутся по орбитам, причем электроны с близкими орбитами образуют некоторую оболочку (слой) атома. Таких оболочек (слоев) может быть одна, две, три — до семи. Каждая оболочка заполняется определенным числом электронов. Особенно важно число электронов во внешней оболочке. Заполнению внешних оболочек электронами соответствует завершение периодов системы Менделеева. Два электрона в атоме гелия заполняют первую оболочку. Дальше, уже во втором периоде, третий внешний электрон начинает собой вторую оболочку, которая постепенно заполняется электронами в атомах бериллия, бора, углерода, азота, кислорода, фтора и, наконец, достигает завершения во втором благородном газе — неоне. Последовательное прибавление восьми электронов от гелия до неона точно соответствует малому периоду системы Менделеева (второму периоду), содержащему восемь элементов. Одиннадцатый внешний электрон (натрия) помещается уже в третью оболочку (слой). Ясно, что тем самым натрий должен был походить по своим химическим свойствам на литий, атом которого также включает один электрон на внешней (второй) оболочке. Действительно литий и натрий — щелочные металлы, походят друг на друга. Остальные щелочные металлы — калий, рубидий, цезий — состоят также из атомов, где на внешней оболочке находится один электрон. Если взять атом благородного газа, т. е. атом с заполненной внешней оболочкой, и добавить один протон в ядро и один электрон, то мы получим из гелия литий, из неона натрий, из аргона калий, из криптона рубидий, из ксенона цезий.
Следует отметить, что при переходе от элемента к элементу оболочки заполняются электронами, вообще говоря, в определенном порядке, определенными группами орбит. Иногда же последовательное заполнение групп близких орбит в рамках одной оболочки нарушается, и более далекие от ядра орбиты заполняются раньше других. Тогда внутри атома оказывается ряд пропущенных, незаполненных орбит. Впервые подобный пропуск имеет место в атоме калия. После калия заполняются не только внешние, но и внутренние орбиты. Поэтому здесь мы встречаем первый большой период менделеевской таблицы из восемнадцати элементов. После калия (атомный номер 19) ближайшим щелочным металлом будет не 27-й (19+8) элемент, а 37-й, именно рубидий (37=19+18).
Наиболее интересный пример заполнения глубоких внутренних, пропущенных орбит представляет уже известная нам группа редкоземельных металлов из 14 элементов (с 58 по 71), которые стоят вместе с лантаном в одной клетке менделеевской таблицы. Атомы этих элементов различаются не внешними электронами, резко меняющими валентность и другие химические и физические свойства, но глубокими внутренними электронами, не играющими существенной роли в химических реакциях. Ясно, что все эти атомы должны быть весьма похожи друг на друга, что и наблюдается в действительности. Этим оправдано помещение указанных элементов в одну клетку периодической системы.
Такое представление об атоме позволяет разъяснить природу химических реакций и связь атомов внутри молекул. Атомы могут терять часть своих внешних электронов или, наоборот, приобретать их. В первом случае число отрицательно заряженных частиц в атоме становится меньше, и атом в целом приобретает положительный заряд, становится положительным ионом. Если же к атому присоединятся дополнительные электроны и заполнят свободные места на его внешней оболочке (слое), то число отрицательно заряженных частиц увеличивается, атом в целом приобретает отрицательный заряд и становится отрицательным ионом. От заполненности внешней оболочки (слоя), т. е. от числа внешних электронов, зависит число электронов, которые могут быть присоединены или отброшены при его превращении в ион, и, следовательно, пропорция, в которой данные элементы соединяются с другими, — валентность. В ряде молекул, например в молекуле соляной кислоты отрицательные и положительные ионы связаны друг с другом электрическим притяжением, как тела с разноименными зарядами.
Читать дальше