Сэр Эдмунд Бекетт привлекает наше внимание к другой весьма интересной теории «11 к 7». При угле наклона грани, равном 51°51′14″, ширина так относится к высоте, как длина квадранта к его радиусу. Бекетт не считает, подобно г-ну Смиту и прочим, что египтяне построили пирамиду исключительно для того, чтобы увековечить это геометрическое соотношение, «хотя, – говорит он, – строители пирамиды могли использовать эти пропорции при возведении сооружения».
Г-н Бекетт показывает, что при угле наклона, равном 51°50′, высота является средней пропорциональной величиной между длиной апофемы и половиной длины основания. Он полагает, что угол в 51° был избран не случайно, именно таков «естественный угол наклона для земляной насыпи, при котором она не будет осыпаться». Еще одно любопытное соотношение отражено в саркофаге, высота которого так относится к двум смежным сторонам, как диаметр к длине окружности.
Капитан Трейси, приняв за радиус круга высоту пирамиды – 232,52 локтя, единицу измерения пирамиды, – находит, что диаметр так относится к периметру квадрата, сторона которого равна 365,243, длине основания в локтях или количеству дней в году, как 1 к 3,1416. Если принять 412,132 – длину Камеры царя в дюймах – за диаметр, то окружность будет равна квадрату, сторона которого – 365,242 локтей – составит длину основания пирамиды.
Нельзя не согласиться с г-ном Дюфу, заметившим, что «ни один древний памятник не демонстрировал столь наглядно проницательность ученых, как пирамиды Гизы».
Г-н Эгню полагает, что строительство пирамиды было предпринято с единственной целью – запечатлеть в камне принцип квадратуры круга.
«Здесь мы видим, – пишет он, – принцип квадратуры круга, проиллюстрированный египтянами весьма любопытным способом». Однако он признает, что «ее арифметическое решение теперь признается невозможным. Геометрическое решение, по всей вероятности, столь же непостижимо. Но я не рискну утверждать, что оно неизвестно было египетским жрецам».
Приведу лишь несколько фрагментов из публикации г-на Эгню, чтобы дать общее представление о предмете нашего разговора:
«Если опустить из вершины пирамиды вертикальную линию на основание боковой стороны и этот отрезок рассматривать как радиус воображаемой окружности, длина ее будет равна сумме сторон основания пирамиды».
«В первоначальной схеме мы находим доминирующую пропорцию из пяти к четырем. Диаметр круга равен пяти, а диагональ квадрата – четырем, отсюда, разумеется, соотношение перпендикуляра пирамиды и половины ее основания составляет пять к четырем».
«Я берусь утверждать, что перпендикуляр Великой пирамиды по отношению к половине ее основания составлял пропорцию пять к четырем, или к ее основанию – как пять к восьми».
«Два перпендикуляра, будучи радиусами кругов, вместе равны сумме периметров оснований».
По мнению г-на Эгню, наиболее совершенной из пирамид Гизы является третья пирамида. Истинный угол наклона ее граней составляет 51°51′14″, а это, говорит Эгню, представляет собой «воплощение истинного совершенства, которого ни одна из двух других пирамид не достигла. Перпендикуляр пирамиды являлся радиусом круга, окружность которого равнялась квадрату основания пирамиды». К таким же результатам пришли сэр Генри Джеймс и г-н Тейлор. Они также утверждают, что высота пирамиды равна радиусу круга, длина окружности которого приблизительно равна длине всех четырех сторон основания.
Экекян-Бей из Константинополя придерживается столь же высокого мнения о третьей пирамиде: «Из всех памятников, возведенных в земле Египетской, третья пирамида считается самой многообещающей с научной точки зрения и наиболее совершенной с точки зрения ее пропорций. Эту пирамиду также можно назвать самой прекрасной, и своей красотой она обязана внешней облицовке из полированного гранита».
Любопытный факт отмечен г-ном Кейси, исследовавшим пол предкамеры в Великой пирамиде. Гранитная его часть, согласно г-ну Кейси, составляет 103,03 пирамидальных дюйма, а известняковая – 116,26 пирамидальных дюйма. Если принять первую цифру за длину стороны квадрата, а вторую – за диаметр круга, получим примерно равные площади двух фигур. Длину стороны основания пирамиды – 9131 дюйма (23 193 см) можно получить, подставив полученные в результате замеров цифры в следующую формулу: 116,26 х 3,1416 х 5 х 5. Умножив 116,26 на длину расстояния от основания пирамиды до предкамеры, помноженную на 50, получим 5813 дюймов (14 765 см) – высоту вершины пирамиды.
Читать дальше
Конец ознакомительного отрывка
Купить книгу