His temperament matched the challenge of discovering a particle that might leave little trace of itself in its passage through matter; he was a shy, quiet, conscientious, reliable man, something of a neutron himself. Rutherford even felt it necessary to scold him for giving the boys at the Cavendish too much attention, though Chadwick took their care and nurturing to be his primary responsibility. “It was Chadwick,” remembers Mark Oliphant, “who saw that research students got the equipment they needed, within the very limited resources of the stores and funds at his disposal.” 565If he seemed “dour and unsmiling” at first, with time “the kindly, helpful and generous person beneath became apparent.” 566He tended, says Otto Frisch, “to conceal his kindness behind a gruff façade.” 567
The façade was protective. James Chadwick was tall, wiry, dark, with a high forehead, thin lips and a raven’s-beak nose. “He had,” say his joint biographers, colleagues both, “a deep voice and a dry sense of humour with a characteristic chuckle.” 568He was born in the village of Bollington, south of Manchester in Cheshire, in 1891. When he was still a small boy his father left their country home to start a laundry in Manchester; Chadwick’s grandmother seems to have raised him. He sat for two scholarships to the University of Manchester at sixteen, an early age even in the English educational system, won them both, kept one and went off to the university.
He meant to read mathematics. The entrance interviews were held publicly in a large, crowded hall. Chadwick got into the wrong line. He had already begun to answer the lecturer’s questions when he realized he was being questioned for a physics course. Since he was too timid to explain, he decided that the physics lecturer impressed him and he would read for physics. The first year he was sorry, his biographers report: “the physics classes were large and noisy.” 569The second year he heard Rutherford lecture on his early New Zealand experiments and was converted. In his third year Rutherford gave him a research project. His timidity again confounded him, this time almost fatally for his career: he discovered a snag in the procedure Rutherford had recommended to him but could not bring himself to point it out. Rutherford thought he missed it. Man and boy found their way past that misunderstanding and Chadwick graduated from Manchester in 1911 with first-class honors.
He stayed on for his master’s degree, working with A. S. Russell and following the research in those productive years of Geiger, Marsden, de Hevesy, Moseley, Darwin and Bohr. In 1913, taking his M.Sc., he won an important research scholarship that required him to change laboratories to broaden his training. By then Geiger had returned to Berlin; Chadwick followed. Which was a pleasure while it lasted—Geiger made a point of introducing Chadwick around, so that he became acquainted with Einstein, Hahn and Meitner, among others in Berlin—but the war intervened.
A reserve officer, Geiger was called up early. He fortified Chadwick with a personal check for two hundred marks before he left. Some of the young Englishman’s German friends advised him to leave the country quickly, but others convinced him to wait to avoid the danger of encountering troop trains along the way. On August 2 Chadwick tried to buy a ticket home by way of Holland at the Cook’s Tours office in Berlin. Cook’s suggested going through Switzerland instead. That struck Chadwick’s friends as risky. He again accepted their advice and settled in to wait.
Then it was too late. He was arrested along with a German friend for allegedly making subversive remarks—merely speaking English would have done the job in those first weeks of hysterical nationalism—and languished in a Berlin jail for ten days before Geiger’s laboratory arranged his release. Once out he returned to the laboratory until chaos retreated behind order again and the Kaiser’s government found time to direct that all Englishmen in Germany be interned for the duration of the war.
The place of internment was a race track at Ruhleben—the name means “quiet life”—near Spandau. Chadwick shared with five other men a box stall designed for two horses and must have thought of Gulliver. In the winter he had to stamp his feet till late morning before they thawed. He and other interns formed a scientific society and even managed to conduct experiments. Chadwick’s cold, hungry, quiet life at Ruhleben continued for four interminable years. This was the time, he said later, making the best of it, when he really began to grow up. 570He returned to Manchester after the Armistice with his digestion ruined and £11 in his pocket. He was at least alive, unlike poor Harry Moseley. Rutherford took him in.
Some of the experiments Chadwick conducted at the Cavendish in the 1920s to look for the neutron, he says, “were so desperate, so far-fetched as to belong to the days of alchemy.” 571He and Rutherford both thought of the neutron, as Rutherford had imagined it in his Bakerian Lecture, as a close union of proton and electron. They therefore conjured up various ways to torture hydrogen—blasting it with electrical discharges, searching out the effects on it of passing cosmic rays—in the hope that the H atom that had been stable since the early days of the universe would somehow agree to collapse into neutrality at their hands.
The neutral particle resisted their blandishments and the nucleus resisted attack. The laboratory, Chadwick remembers, “passed through a relatively quiet spell. Much interesting and important work was done, but it was work of consolidation rather than of discovery; in spite of many attempts the paths to new fields could not be found.” 572It began to seem, he adds, that “the problem of the new structure of the nucleus might indeed have to be left to the next generation, as Rutherford had once said and as many physicists continued to believe.” 573Rutherford “was a little disappointed, because it was so very difficult to find out anything really important.” 574Quantum theory bloomed while nuclear studies stalled. Rutherford had felt optimistic enough in 1923 to shout at the annual meeting of the British Association, “We are living in the heroic age of physics!” By 1927, in a paper on atomic structure, he was a little less confident. 575“We are not yet able to do more than guess at the structure even of the lighter and presumably least complex atoms,” he writes. 576He proposed a structure nonetheless, with electrons in the nucleus orbiting around nuclear protons, an atom within an atom.
They had other work. In hindsight, it was necessary preparation. The scintillation method of detecting radiation had reached its limit of effectiveness: it was unreliable if the counting rate was greater than 150 per minute or less than about 3 per minute, and both ranges now came into view in nuclear studies. 577A disagreement between the Cavendish and the Vienna Radium Institute convinced even Rutherford of the necessity of change. Vienna had reproduced the Cavendish’s light-element disintegration experiments and published completely different results. Worse, the Vienna physicists attributed the discrepancy to inferior Cavendish equipment. Chadwick laboriously reran the experiments with a specially made microscope with zinc sulfide coated directly onto the lens of the microscope’s objective, which greatly brightened the field. The results confirmed the Cavendish’s earlier count. Chadwick then went to Vienna. “He found,” write his biographers, “that the scintillation counting was done by three young women—it was thought that not only did women have better eyes than men but they were less likely to be distracted by thinking while counting!” Chadwick observed the young women at work and realized that because they understood what was expected of the experiments they produced the expected results, unconsciously counting nonexistent scintillations. 578To test the technicians he gave them, without explanation, an unfamiliar experiment; this time their counts matched his own. Vienna apologized.
Читать дальше