Изотопологи – это химически идентичные молекулы, которые различаются только по составу изотопов. Метан, состоящий из одного атома углерода и четырех атомов водорода, существует в виде целого ряда изотопологов. Примерно 99,8 % всех атомов углерода являются более легкой разновидностью углерода – углеродом-12, но на каждые пятьсот атомов приходится один тяжелый изотоп углерода-13. Аналогично водород обычно бывает представлен легким вариантом (строго говоря, это водород-1, но его обычно называют просто водород), но существует также и более тяжелый изотоп – водород-2, который обычно называют дейтерием. Соотношение водорода и дейтерия на Земле примерно равно тысяча к одному. Эти пропорции означают, что одна из каждых пятисот молекул метана содержит изотоп углерода-13, а примерно четыре из каждой тысячи молекул метана содержат дейтерий.
Следовые количества каждого из двух тяжелых изотопов довольно трудно измерять, но Эд Янг с коллегами охотятся вовсе не за ними. Они намереваются измерить неуловимые, дважды замещенные изотопологи метана – примерно одну молекулу метана на миллион, которая содержит либо одновременно углерод-13 и дейтерий (обозначаемую 13CH 3D), либо два дейтерия ( 12CH 2D 2). По подсчетам Эдвина Шойбле, соотношение этих двух редких изотопологов в каждом отдельно взятом образце метана может служить чувствительным индикатором температуры, при которой формировался метан. Все дело именно в температуре: если данный метан образовался при температуре ниже 100 °С, то это свидетельствует о его органическом происхождении; если он формировался при температуре выше 500 °С, то он, вероятнее всего, неорганический.
На бумаге этот замысел выглядит замечательно. Однако проблема в том, что в мире не существует прибора, способного измерить соотношение между 13CH 3D и 12CH 2D 2. Обычный изотопный анализ проводится на масс-спектрометре, измеряющем процесс разделения в соответствии с их массами. Эти два изотополога различаются по массе меньше чем на одну сотую процента, а потому попытки различить их сопровождаются существенными осложнениями. К тому же изотопологи встречаются в крайне малых концентрациях, что еще более затрудняет их анализ. Эду Янгу и его сотрудникам понадобился прибор с гораздо более высокой способностью различать массы и узнавать молекулы. Поэтому одним из первых шагов, предпринятых Обсерваторией глубинного углерода, стал сбор средств для разработки опытного образца такого инструмента, стоимостью 2 млн долларов, пригодного для измерения содержания изотопологов в метане. (В этом приняли участие также Национальный научно-исследовательский фонд США, Департамент энергетики США, корпорация Shell Oil и Институт Карнеги в Вашингтоне.) Предприятие весьма рискованное. Чтобы создать такой прибор, понадобятся годы, а затем уйдет еще несколько лет, пока мы не убедимся, что он действует. Оправданием такому риску служит возможность получить определенный ответ на вопрос об источниках образования глубинного метана, а также представление об участии метана в кардинальном изменении климата на планете.
Возвращаясь к вопросу о Земле в эпоху неопротерозоя, отметим, что в конце первого ледникового периода, 700 млн лет назад, наступил переломный момент в состоянии климата. Важную роль сыграло при этом увеличение содержания углекислого газа в атмосфере; возможно, тому способствовало и внезапное высвобождение метана из газовых гидратов. В геологическое мгновение ока, может быть, в пределах тысячи лет климат резко изменился. Земля из снежного шара превратилась в парник, температура побила все рекорды.
Долгое время, примерно 30 млн лет, на Земле преобладал теплый климат, но парниковый эффект гарантировал собственную кончину. Содержание углекислого газа в атмосфере, достигнув своего максимума, начало постепенно уменьшаться. Часть парникового газа была изъята из атмосферы в процессе химических реакций с горными породами. Обнажившаяся земля, открытая осадкам, содержащим химически агрессивную углекислоту (следствие высокого содержания СО 2в атмосфере), подверглась стремительному выветриванию. Приток минеральных питательных веществ вкупе с восстановлением потока солнечной энергии привел к скачкообразному росту водорослей, поглощающих парниковый газ.
И все эти события нашли отражение в летописи изотопов углерода. В течение 150 млн лет климат Земли колебался между этими двумя крайностями. Не раз и не два, а по меньшей мере три раза ледники наступали и отступали, и климат соответственно менялся от арктического холода к тропической жаре – и обратно. Первый ледниковый период, так называемое Стуртианское оледенение, достиг максимальной точки около 720 млн лет назад. За ним следовало Мариноанское оледенение, 650 млн лет назад. А потом менее суровое Гаскиерское оледенение, 580 млн лет назад. Мощные осадочные толщи в десятках стран отражают подробности этого драматического цикла. По мере отступления льда ледники оставляли после себя нагромождения вывернутых валунов и окатанных камней, комковатых тиллитов и отполированных скальных пород. Вскоре после этого слои тиллитов покрылись толщей отложений кристаллических карбонатных минералов – еще один характерный признак потепления океанов. Карбонатные осадки в перенасыщенных углекислым газом морских водах образовывались так быстро, что дно вскоре покрылось гигантскими кристаллами метровой длины. Эти повышенные скорости осадконакопления свидетельствуют о временах, когда измученная поверхность Земли утратила химическое равновесие – и навсегда ушел в прошлое застой «скучного» миллиарда.
Читать дальше
Конец ознакомительного отрывка
Купить книгу