Нора надеялась на коэффициент между 25 и 35, типичный для бактериальных матов. Но компьютер выдал совершенно иной результат. Изотопный коэффициент оказался равным нулю, т. е. величине, не имеющей ничего общего с биологией. Это характерно для неорганического углерода, который в жидком виде поднимается из мантии и откладывается в виде тонких прожилок черного графита. Общий итог: черные следы в образцах Ноффке действительно содержали углерод, но, безусловно, имели небиологическое происхождение.
Памятуя об этом наглядном уроке, мы немедленно принялись за анализ других черных следов в большом количестве образцов многообещающих древних отложений, привезенных Норой из самых разных точек – из Южной Африки, Австралии, Гренландии. Время от времени мы получали коэффициент изотопов углерода на уровне 30, соответствующем бактериальным матам, и нашли другие доказательства того, что более 3 млрд лет назад на нашей планете бактерии водились во множестве вблизи песчаных берегов. И в отличие от мелких черных следов или вкраплений биомолекул находки Ноффе можно увидеть непосредственно, в масштабе целых обнажений. Ее данные можно было, как говорится, потрогать рукой.
Но остается главный вопрос: производили ли микроорганизмы из этих матов кислород или они использовали солнечный свет для более простой фотохимии? Бактерии развивались с использованием различных способов потребления солнечной энергии, и не все из этих способов сопровождались выделением кислорода. Ответ на вопрос, как обеспечивали свою жизнедеятельность организмы из бактериальных матов давностью 3 млрд лет, могут дать только будущие исследования.
Великое кислородное событие многими признается как важная часть истории Земли. Более 2,5 млрд лет назад атмосфера Земли содержала весьма мало кислорода. С ростом численности бактерий, имеющих фотосинтетический аппарат, и накоплением вырабатываемого ими кислорода между 2,4 и 2,2 млрд лет назад произошло резкое увеличение содержания кислорода в атмосфере – более 1 % от современного уровня. Это необратимое изменение преобразовало приповерхностную среду планеты и проложило дорогу к еще более серьезным переменам.
Как уже говорилось, эти перемены привлекли пристальное внимание многих исследователей. Вот и мы с моим давним коллегой Дмитрием Сверженским попали в их число, выступив с поразительной, хотя и несколько парадоксальной, гипотезой: большинство минералов на Земле порождены живым веществом. В течение многих веков подразумевалось как само собой разумеющееся, что мир минералов существует независимо от живой материи. Наша идея «минеральной эволюции», в отличие от традиционного взгляда, подчеркивает взаимозависимость между развитием геосферы и биосферы. Мы считаем, что добрых две трети из приблизительно 4500 известных видов минералов никак не могли образоваться до Великого кислородного события, а большинство минералов вообще не могло появиться на безжизненной планете. С этой точки зрения такие полудрагоценные минералы, как бирюза, темно-синий лазурит и бриллиантовый зеленый малахит, являются несомненными продуктами живой материи.
Причины такой взаимозависимости минералов и живой материи очевидны. Эти прекрасные минералы наряду со многими другими сформировались в подповерхностных слоях коры в результате взаимодействия насыщенной кислородом воды и древних пород. Грунтовые воды растворяют, переносят, меняют химический состав и модифицируют горные породы до высоты несколько тысяч метров. В ходе этих изменений происходят новые химические реакции, в результате которых и формируются новые формы полезных ископаемых. Мы со Сверженским составили обширный каталог минералов, порожденных таким путем из меди, урана, железа, марганца, никеля, ртути, молибдена и многих других элементов. До увеличения объема кислорода на Земле такие минералообразующие реакции просто не смогли бы состояться.
«Как насчет красной планеты Марс? – спрашивают нас коллеги. – Не является ли пораженная ржавчиной поверхность соседней с нами планеты свидетельством того, что Марс тоже подвергся насыщению кислородом и обрел разнообразие минералов, подобное земному?» – «Нет», – отвечаем мы. Кардинальное различие состоит в том, что Марс и предположительно другие малые планеты вроде него не испытывали динамичной циркуляции насыщенных кислородом грунтовых вод, которая и обусловила минеральное разнообразие на нашей планете. Может быть, на Марсе и существуют запасы грунтовых вод, что подтверждается современными исследованиями, но вода находится в замороженном состоянии. Единственной причиной красного цвета поверхности Марса является массированная потеря приповерхностного водорода (а вместе с ним и большой части запасов воды). То небольшое количество кислорода, которое образовалось в результате потери водорода, окисляет тонкий слой поверхности Марса, но глубоко в недра коры проникнуть не может.
Читать дальше
Конец ознакомительного отрывка
Купить книгу