Итак, удивительная способность переходить из двухзарядного в трехзарядное состояние (мы еще вернемся к этой его способности спустя пару миллиардов лет, когда на Земле предположительно зародилась жизнь) позволяет железу в двухвалентном или трехвалентном обличье вести себя подобно другим веществам большой шестерки. Но постойте – железо обладает еще одной важнейшей способностью: оно легко превращается в металл.
Большая часть описанных до сих пор химических соединений обменивается электронами, превращаясь в ионы. Алюминий, магний, кальций и железо отдают электроны, кислород их принимает. Соответственно такие соединения называются ионными. Однако металлы образуются иным путем. Каждый атом металла отдает один или несколько электронов и обретает положительный заряд. Но эти отторгнутые электроны образуют вокруг металла нечто вроде вязкого, отрицательно заряженного «моря», которое удерживает все положительно заряженные атомы вместе, как дробинки в патоке. Железо в форме металла представляет собой огромное скопление атомов, совместно владеющих свободными электронами.
Такое коммунальное хозяйство весьма продуктивно. Начать с того, что электроны, находящиеся в общем владении, свободно передвигаются, что делает металлы прекрасными проводниками электричества (электричество, собственно, и представляет собой направленный поток электронов). Для сравнения: в ионах, состоящих из кислорода и алюминия или магния, каждый электрон закреплен на своем месте так прочно, что поток электричества невозможен. Другим следствием металлических соединений является то, что такие вещества преимущественно гнутся, а не ломаются. «Электронное море», окружающее атомы, можно сворачивать и закручивать, не умаляя его совместной силы, в отличие от хрупких камней и минералов.
Внимательный читатель наверняка уже заметил, что не только железо способно образовывать металлы. Банки из алюминия, фольга, электропроводка всем известны; сплавы из металлического магния широко применяются в высокотехнологичных гоночных автомобилях и игрушках; в основе большинства электронных устройств используются полуметаллы (металлоиды) на основе кремния (отсюда Кремниевая долина). Но все эти металлические виды алюминия, магния и кремния являются продуктами современного химического производства. На то, чтобы отделить их от кислорода, уходит много энергии, и в виде металлов они практически не встречаются в природе.
Железо гораздо меньше привязано к кислороду и свободнее входит в самые разные соединения. В отличие от кремния, алюминия, магния или кальция, оно спокойно вступает во взаимодействие с любыми акцепторами электронов, особенно с серой (блестящий пирит является сульфидом железа), а также с медным колчеданом. В отличие от других элементов, железо легко образует плотный металл, который оседает в глубине планет и формирует их массивное ядро.
Большая шестерка элементов, каждый из которых является неизбежным результатом взрывающихся звезд и эволюции планет земного типа, лежит в основе разнообразных горных пород на Земле. Их химические свойства обусловили необратимый ход преобразований, приведших к современному состоянию мира. Однако прежде образования горных пород Земля должна была остыть.
Попробуйте еще раз представить бурные времена, последовавшие за гигантским столкновением, в результате которого образовалась Луна. В первые дни, а может, и недели после столкновения то, что стало впоследствии Землей и Луной находилось в неупорядоченном состоянии. В то время ни Земля, ни Луна не имели твердой поверхности. Они представляли собой два шарообразных тела, покрытых океаном магмы, кипящей, раскаленной, поливаемой дождем расплавленного кремния, и все это при температурах, превышающих многие тысячи градусов.
По мере освобождения от остатков Тейи жар, подобный жару доменной печи, поднимался от Земли в холодный вакуум космоса, и внешняя оболочка планеты неуклонно остывала. При этом космические силы старались как можно дольше сохранять земную поверхность в расплавленном состоянии. Огромные астероиды продолжали обстреливать планету. Каждый такой удар добавлял тепловой энергии, дополнительно раскаляя область столкновения, что препятствовало образованию устойчивой коры. Приливные силы Луны, располагавшейся на близком расстоянии, также вносили свою лепту в поддержание поверхности Земли в жидком состоянии, поскольку каждые пять часов вокруг планеты вспухала бурная волна магмы, заново разбивая тоненькую твердую оболочку. Добавляли жару и радиоактивные элементы, в изобилии имевшиеся на Земле: от короткоживущих тепловыделяющих изотопов алюминия и вольфрама до долгожителей – радиоактивных изотопов урана, тория и калия. Да и недавно возникшая развивающаяся атмосфера, разогреваемая парами от вулканических выбросов, богатых углекислым газом и водой, усиливала общий нагрев, производя сверхпарниковый эффект.
Читать дальше
Конец ознакомительного отрывка
Купить книгу