Михаил Левицкий - Лаборатория химических историй. От электрона до молекулярных машин

Здесь есть возможность читать онлайн «Михаил Левицкий - Лаборатория химических историй. От электрона до молекулярных машин» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2022, ISBN: 2022, Жанр: Химия, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Лаборатория химических историй. От электрона до молекулярных машин: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Лаборатория химических историй. От электрона до молекулярных машин»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Что происходит с молекулами в момент химических реакций и почему одни вещества становятся мягкими, а другие твердеют, одни приобретают упругость, а другие – хрупкость? Каким образом вязкая жидкая масса превращается в легкую приятную ткань и почему человек не может жить без полимеров? Какими были люди, совершившие величайшие открытия в химии, и какую роль сыграл элемент случайности в этих открытиях? Как выглядит лаборатория и так ли на самом деле скучна жизнь обычного лаборанта? Отвечая на эти и другие вопросы, Михаил Левицкий показывает, что химия – это весьма увлекательно!

Лаборатория химических историй. От электрона до молекулярных машин — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Лаборатория химических историй. От электрона до молекулярных машин», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Целлулоид обладает массой достоинств: изделия из него можно получать отливкой и прессованием, он легок, прочен, отлично полируется, подвергается механической обработке, подобно кости и рогу, легко окрашивается, при нагревании изделия до 120 ℃ снова становится пластичным и принимает любую форму. Однако все эти достоинства перечеркиваются одним недостатком – целлулоид исключительно пожароопасен и может гореть без воздуха, поскольку по составу близок к бездымному пороху. История помнит жуткие пожары в кинобудках и на складах фотоматериалов. В настоящее время этот пластик на основе природного полимера полностью заменили другие полимеры.

Пожароопасность удалось исключить, когда вместо нитрогрупп в состав целлюлозы ввели ацетатные группы CH 3C(=O)O-. В элементарном звене целлюлозы находятся три гидроксильные НО-группы: возможно ацетилирование как двух НО-групп, так и трех (рис. 1.6а, б). Ацетилирование – это химическая реакция, в ходе которой атом водорода замещается на остаток уксусной кислоты CH 3CO. Уксусная кислота ацетилирует очень слабо, поэтому используют более активный уксусный ангидрид, а для связывания выделяющейся воды применяют концентрированную серную кислоту, как и в производстве нитроцеллюлозы.

Ацетатцеллюлоза впервые была получена П Шутценбергером в 1865 г в Германии - фото 9

Ацетатцеллюлоза впервые была получена П. Шутценбергером в 1865 г. в Германии. Он сразу отметил, что, в отличие от нитроцеллюлозы, новое соединение плохо загорается и быстро гаснет. Ацетатцеллюлозное волокно оказалось мягким, эластичным, малосминаемым, однако оно обладает невысокой прочностью, поэтому при изготовлении тканей в него добавляют натуральные и синтетические волокна.

Триацетат целлюлозы полностью вытеснил нитроцеллюлозу из кино- и фотопромышленности, а также стал основным материалом при изготовлении магнитофонных лент. Пластмассы на основе триацетата целлюлозы (рис. 1.6б), называемые этролами, используют в производстве трубопроводов, через которые транспортируется природный газ, при изготовлении деталей автомобилей, самолетов, судов (штурвалов, приборных щитков, пригодных для работы в экстремальных условиях Арктики и тропиков). Триацетат целлюлозы – абсолютный лидер среди материалов, применяемых в производстве оправ очков – около 70 % всех производимых пластмассовых оправ.

Диацетат целлюлозы (рис. 1.6а) содержит НО-группы и, соответственно, гидрофилен (то есть не отталкивает воду). Его используют в качестве полимера-носителя для лекарственных препаратов продолжительного действия. Диацетатные пленки применяют для остекления теплиц и парников, так как они пропускают УФ-лучи. Если еще уменьшить количество ацетатных групп и, соответственно, увеличить содержание НО-групп, то полимер можно использовать в хирургии – в случаях, когда необходимо накладывать швы с рассасывающимися нитями.

Итак, результаты химической модификации целлюлозы оказались успешными. А можно ли просто растворить целлюлозу, никак не модифицируя, не изменяя ее состав и не разрушая полимерные цепи? Ранее было сказано, что целлюлоза ни в чем не растворялась, однако для химии нет ничего невозможного – за исключением тех случаев, когда требуется нарушить законы природы.

В целом предполагалось, что если на некоторое время разрушить водородные связи и затем получить из раствора волокно, то эти связи восстановятся сами, и мы вновь получим исходную целлюлозу. Разрушить водородные связи можно, если ввести в полимер какое-то высокополярное соединение, которое будет взаимодействовать с гидроксильными группами более интенсивно, чем гидроксильные группы между собой. В этом случае можно рассчитывать на то, что соединение, постепенно проникая внутрь с поверхности, будет размыкать "крючки" водородных связей.

Растворитель для целлюлозы был найден в 1857 г. швейцарским химиком Э. Швейцером. Это было весьма необычное соединение, которое никогда и никем не рассматривалось в качестве растворителя – водный раствор комплексного соединения гидроксида меди с аммиаком [Cu(NH 3) n](OH) 2, n= 4 ÷ 6 (диапазон в значении "n" указывает на то, что это комплекс переменного состава). Его получают растворением гидроксида меди Cu(OH) 2в водном аммиаке (нам его раствор известен как нашатырный спирт, который в медицине применяют при потере сознания). Целлюлоза растворяется в медно-аммиачном комплексе при комнатной температуре, затем раствор продавливается через фильеру в ванну с проточной водой. Медно-аммиачный комплекс вымывается, а полученное волокно по составу будет представлять собой исходную целлюлозу. Тем не менее при этом происходит некоторая трансформация, немного изменяется пространственное расположение звеньев полимерной молекулы, а полученные волокна совсем не похожи на хлопковое волокно. Они имеют блестящую поверхность и внешне напоминают натуральный шелк, поэтому такое волокно стали называть медно-аммиачным шелком. Оно оказалось непрочным. В 1901 г. работы немецкого химика Ф. Тиле ознаменовали следующий этап в истории этого волокна: формование стали проводить с одновременной вытяжкой, благодаря чему участки полимерных цепей ориентировались вдоль оси волокна, что привело к заметному повышению прочности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Лаборатория химических историй. От электрона до молекулярных машин»

Представляем Вашему вниманию похожие книги на «Лаборатория химических историй. От электрона до молекулярных машин» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Лаборатория химических историй. От электрона до молекулярных машин»

Обсуждение, отзывы о книге «Лаборатория химических историй. От электрона до молекулярных машин» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x