Михаил Левицкий - Карнавал молекул. Химия необычная и забавная

Здесь есть возможность читать онлайн «Михаил Левицкий - Карнавал молекул. Химия необычная и забавная» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Литагент Альпина, Жанр: Химия, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Карнавал молекул. Химия необычная и забавная: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Карнавал молекул. Химия необычная и забавная»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга в форме занимательных бесед предлагает интересные примеры и истории, которые позволят родителям привлечь внимание школьников к изучению естественных наук, преподавателям средней школы – сделать занятия более увлекательными, а также познакомит студентов и аспирантов, выбравших химию своей специальностью, с тем, как ход рассуждений исследователя позволяет получать интересные результаты.
В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов. Кроме того, читатель потренируется в решении занятных задач, что особенно приятно, когда рядом помещена подсказка, а потом и сам ответ.
В отличие от учебника в книге нет последовательного изложения основ химии, поэтому ее можно читать, начиная с любой главы.

Карнавал молекул. Химия необычная и забавная — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Карнавал молекул. Химия необычная и забавная», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
В рассмотренных нами примерах катион Ag образует две координационные связи с - фото 52

В рассмотренных нами примерах катион Ag +образует две координационные связи с двумя атомами N. С другими лигандами он может образовывать больше связей. Например, с атомом О фенольного гидроксила – ОН он может образовывать три координационных связи. Для того чтобы атом О мог проявить свою повышенную координирующую способность, необходимо отодвинуть от него атом Н, эту роль берут на себя атомы N, которые образуют с Н так называемые водородные связи (изображены на рис. 1.57 тремя точками). Таким образом, роль атомов N, в отличие от предыдущих случаев, подсобная. На рисунке лиганд с водородными связями показан на фоне серого прямоугольника, он содержит на концах молекулы две НО-группы, присоединенные к бензольным ядрам. Катион Ag +окружает себя тремя такими группами, а группы НО на противоположных концах лигандов координируют другие катионы Ag +. Образуется трехлучевая структура, которая показана упрощенно: шарики – катионы Ag +, цилиндрические палочки – молекулы лиганда. Конструкция имеет форму пирамиды.

Такие трехлучевые фрагменты соединяются однако получающаяся конструкция иная - фото 53

Такие трехлучевые фрагменты соединяются, однако получающаяся конструкция иная, нежели в предыдущем случае. Образуются спаянные между собой деформированные шестиугольники, которые объединяются во взаимно пересекающиеся слои, для наглядности эти слои различаются по цвету. Возникает кольчугоподобная конструкция, которую, пожалуй, можно сравнить с кроватной панцирной сеткой (рис. 1.58).

Можно предположить что химики совсем не планировали получить столь необычную - фото 54

Можно предположить, что химики совсем не планировали получить столь необычную конструкцию, процессом сборки «командовала» природа, зато ученые были удовлетворены результатом.

Кому все это нужно?

Сколько усилий было затрачено при получении этих молекул, сколько разочарований и моментов торжества! Но неужели это только для того, чтобы продемонстрировать возможности химии? Все обстоит немного иначе. Подобные исследования всегда начинаются в результате естественной потребности пытливого ума решить во что бы то ни стало необычную задачу. Оттачивая мастерство в планировании эксперимента и искусство синтеза, ученые получают нужный результат. Тем не менее все рассмотренные структуры интересны не только как результат воображения и фантазии химиков. Новые соединения в большинстве случаев имеют интересные и полезные свойства. Так, оказалось, что катенаны существуют в живой природе. У некоторых биологических объектов – например митохондрий – часть молекул ДНК имеет катенановое строение. Разработанные стратегии и методики синтеза катенанов позволили биохимикам приступить к созданию молекул ДНК с подобной геометрией, чтобы изучать действие различных ферментов (биокатализаторов) на процессы, протекающие в живой клетке.

Все рассмотренные нами катенаноподобные молекулы были, образно говоря, сплетены из «проволоки», представляющей собой одиночные цепочки атомов металлов, углерода и др. В настоящее время обсуждают возможность получения подобных конструкций, где роль «проволоки» или, точнее говоря, «веревки» будут играть жгуты молекул ДНК. Это направление обещает интересные результаты, которые со временем могут быть использованы в биохимии.

Катенаноподобные структуры перспективны и в областях, далеких от биохимии, например в микроэлектронике, причем не в роли некоторых дополнительных усовершенствований, а для решения самых насущных проблем.

Рассмотрим подробнее пример того, как отработанное мастерство в «хитросплетении» молекул может принести реальную пользу. Упоминавшийся ранее Ф. Стоддард (создатель борромеевых колец) сумел решить одну важную задачу. Все дело в том, что современные компьютеры, поражающие нас быстродействием и компактностью, подошли к пределу своих возможностей. На сегодня техника достигла минимального размера ячеек памяти и максимального количества вычисляющих элементов в одном кристалле кремния. Переход от современных устройств к ячейкам памяти, где носителями информации служат отдельные молекулы, позволит увеличить плотность записи информации в десятки раз. Решение было найдено при использовании катенаноподобных структур, точнее ротаксанов. Напомним, что ротаксаны – конструкции, когда на молекулу-гантель насажена кольцевая молекула, причем объемные заглушки на концах гантели не позволяют кольцевой молекуле соскользнуть с оси, – относят к классу катенанов.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Карнавал молекул. Химия необычная и забавная»

Представляем Вашему вниманию похожие книги на «Карнавал молекул. Химия необычная и забавная» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Карнавал молекул. Химия необычная и забавная»

Обсуждение, отзывы о книге «Карнавал молекул. Химия необычная и забавная» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x